江蘇省南師附中集團達標名校2024屆中考數(shù)學模擬預測題含解析_第1頁
江蘇省南師附中集團達標名校2024屆中考數(shù)學模擬預測題含解析_第2頁
江蘇省南師附中集團達標名校2024屆中考數(shù)學模擬預測題含解析_第3頁
江蘇省南師附中集團達標名校2024屆中考數(shù)學模擬預測題含解析_第4頁
江蘇省南師附中集團達標名校2024屆中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南師附中集團達標名校2024學年中考數(shù)學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.22.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm3.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±204.共享單車為市民短距離出行帶來了極大便利.據2017年“深圳互聯(lián)網自行車發(fā)展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學記數(shù)法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×1075.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O外 C.點P在⊙O上 D.無法判斷6.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°7.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據中,中位數(shù)是()A.8 B.10 C.21 D.228.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.9.如圖是由五個相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.10.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數(shù)根;其中正確的是()A.①③ B.②③ C.③④ D.②④二、填空題(共7小題,每小題3分,滿分21分)11.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.12.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=__________cm.13.將一副三角尺如圖所示疊放在一起,則的值是.14.不等式-2x+3>0的解集是___________________15.如圖,將一個正三角形紙片剪成四個全等的小正三角形,再將其中的一個按同樣的方法剪成四個更小的正三角形,……如此繼續(xù)下去,結果如下表:則an=__________(用含n的代數(shù)式表示).所剪次數(shù)1234…n正三角形個數(shù)471013…an16.已知關于x的方程x2﹣2x+n=1沒有實數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡結果是_____.17.關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結PD、AD.(1)求△ABC的面積;(2)設PB=x,△APD的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.19.(5分)在平面直角坐標系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉,得△A′OB′,點A、B旋轉后的對應點為A′、B′,記旋轉角為α.(I)如圖1,若α=30°,求點B′的坐標;(Ⅱ)如圖2,若0°<α<90°,設直線AA′和直線BB′交于點P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結果即可).20.(8分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設點P的橫坐標為m.PQ與OQ的比值為y,求y與m的數(shù)學關系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當∠PBA+∠CBO=45°時.求△PBA的面積.21.(10分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來.22.(10分)某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?23.(12分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?4.(14分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達到1560元?若能,求出每份套餐的售價應定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】

連接OB,根據切線的性質與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據等腰三角形的性質與三角函數(shù)得到OC的長,即可得到CD的長.【題目詳解】解:如圖,連接OB,∵PB切⊙O于點B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【題目點撥】本題主要考查切線的性質與銳角的三角函數(shù),解此題的關鍵在于利用切線的性質得到相關線段與角度的值,再根據圓和等腰三角形的性質求解即可.2、C【解題分析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【題目詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【題目點撥】此題考查了圓錐的計算,用到的知識點為:圓錐側面展開圖的弧長=;圓錐的底面周長等于側面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.3、B【解題分析】

根據完全平方式的特點求解:a2±2ab+b2.【題目詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【題目點撥】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.4、C【解題分析】

絕對值大于1的正數(shù)可以科學計數(shù)法,a×10n,即可得出答案.【題目詳解】n由左邊第一個不為0的數(shù)字前面的0的個數(shù)決定,所以此處n=6.【題目點撥】本題考查了科學計數(shù)法的運用,熟悉掌握是解決本題的關鍵.5、B【解題分析】

比較OP與半徑的大小即可判斷.【題目詳解】,,,點P在外,故選B.【題目點撥】本題考查點與圓的位置關系,記住:點與圓的位置關系有3種設的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內.6、B【解題分析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關鍵.7、D【解題分析】分析:根據條形統(tǒng)計圖得到各數(shù)據的權,然后根據中位數(shù)的定義求解.詳解:一共30個數(shù)據,第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關鍵.8、A【解題分析】

根據,只要求出即可解決問題.【題目詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【題目點撥】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.9、A【解題分析】試題分析:從上面看易得上面一層有3個正方形,下面中間有一個正方形.故選A.【考點】簡單組合體的三視圖.10、D【解題分析】

①錯誤.由題意a>1.b>1,c<1,abc<1;

②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;

③錯誤.拋物線與x軸的另一個交點是(1,1);

④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.【題目詳解】解:∵拋物線開口向上,∴a>1,

∵拋物線交y軸于負半軸,∴c<1,

∵對稱軸在y軸左邊,∴-<1,

∴b>1,

∴abc<1,故①錯誤.

∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,

當ax2+bx+c<mx+n時,-3<x<-1;

即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,

拋物線與x軸的另一個交點是(1,1),故③錯誤,

∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,

∴方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.

故選:D.【題目點撥】本題考查二次函數(shù)的性質、二次函數(shù)與不等式,二次函數(shù)與一元二次方程等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數(shù)形結合的思想解決問題.二、填空題(共7小題,每小題3分,滿分21分)11、120°【解題分析】

設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【題目詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【題目點撥】本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.12、1.1【解題分析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點D為AB的中點,∴OD=AB=2.1cm.∵將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.13、【解題分析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.14、x<【解題分析】

根據解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【題目詳解】移項,得:-2x>-3,系數(shù)化為1,得:x<,故答案為x<.【題目點撥】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.15、3n+1.【解題分析】試題分析:從表格中的數(shù)據,不難發(fā)現(xiàn):多剪一次,多3個三角形.即剪n次時,共有4+3(n-1)=3n+1.試題解析:故剪n次時,共有4+3(n-1)=3n+1.考點:規(guī)律型:圖形的變化類.16、﹣1【解題分析】

根據根與系數(shù)的關系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對值符號,即可得出答案.【題目詳解】解:∵關于x的方程x2?2x+n=1沒有實數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【題目點撥】本題考查了根的判別式,解題的關鍵是根據根與系數(shù)的關系求出n的取值范圍再去絕對值求解即可.17、k<1且k≠1【解題分析】試題分析:根據一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.解:∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數(shù)根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故答案為k<1且k≠1.考點:根的判別式;一元二次方程的定義.三、解答題(共7小題,滿分69分)18、(1)12(2)y=(0<x<5)(3)或【解題分析】試題分析:(1)過點A作AH⊥BC于點H,根據cosB=求得BH的長,從而根據已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據,代入相關的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當∠PAD=90°時,,解得x=,綜上所述,PB=或.【題目點撥】本題考查了相似三角形的判定與性質、底在同一直線上且高相等的三角形面積的關系等,結合圖形及已知選擇恰當?shù)闹R進行解答是關鍵.19、(1)B'的坐標為(,3);(1)見解析;(3)﹣1.【解題分析】

(1)設A'B'與x軸交于點H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點M(1,),連接MP,由∠APB=90°,推出點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,),所以當PM⊥x軸時,點P縱坐標的最小值為﹣1.【題目詳解】(Ⅰ)如圖1,設A'B'與x軸交于點H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點B'的坐標為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點P縱坐標的最小值為.如圖,作AB的中點M(1,),連接MP,∵∠APB=90°,∴點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,).∴當PM⊥x軸時,點P縱坐標的最小值為﹣1.【題目點撥】本題考查的知識點是幾何變換綜合題,解題的關鍵是熟練的掌握幾何變換綜合題.20、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解題分析】

(3)通過一次函數(shù)解析式確定A、B兩點坐標,直接利用待定系數(shù)法求解即可得到b,c的值,令y=4便可得C點坐標.

(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設點P坐標為(m,-m2+m+2),Q點坐標(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關系,再次利用即可求解.

(3)求得P點坐標,利用圖形割補法求解即可.【題目詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時PB過點(2,4).設直線PB解析式為,y=kx+2.把點(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當x=5時,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過P作PH⊥cy軸于點H.則S四邊形OHPA=(OA+PH)?OH=(2+5)×7=24.S△OAB=OA?OB=×2×2=7.S△BHP=PH?BH=×5×3=35.∴S△PBA=S四邊形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【題目點撥】本題考查了函數(shù)圖象與坐標軸交點坐標的確定,以及利用待定系數(shù)法求解拋物線解析式常數(shù)的方法,再者考查了利用數(shù)形結合的思想將圖形線段長度的比化為坐標軸上點之間的線段長度比的思維能力.還考查了運用圖形割補法求解坐標系內圖形的面積的方法.21、(1)-3;(2).【解題分析】分析:(1)代入30°角的余弦函數(shù)值,結合零指數(shù)冪、負整數(shù)指數(shù)冪的意義及二次根式的相關運算法則計算即可;(2)按照解一元一次不等式組的一般步驟解答,并把解集規(guī)范的表示到數(shù)軸上即可.(1)原式===-3.(2)解不等式①得:,解不等式②得:,∴不等式組的解集為:不等式組的解集在數(shù)軸上表示:點睛:熟記零指數(shù)冪的意義:,(,為正整數(shù))即30°角的余弦函數(shù)值是本題解題的關鍵.22、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解題分析】

(1)由銷售單價每漲1元,就會少售出10件玩具得銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范圍,然后把w=﹣10x2+1300x﹣1轉化成y=﹣10(x﹣65)2+12250,結合x的取值范圍,求出最大利潤.【題目詳解】解:(1)銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案為:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論