版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西安市雁塔區(qū)電子科技中學(xué)2024年中考數(shù)學(xué)最后一模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.由五個(gè)相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.2.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+13.鄭州地鐵Ⅰ號(hào)線火車站站口分布如圖所示,有A,B,C,D,E五個(gè)進(jìn)出口,小明要從這里乘坐地鐵去新鄭機(jī)場(chǎng),回來(lái)后仍從這里出站,則他恰好選擇從同一個(gè)口進(jìn)出的概率是()A. B. C. D.4.“保護(hù)水資源,節(jié)約用水”應(yīng)成為每個(gè)公民的自覺行為.下表是某個(gè)小區(qū)隨機(jī)抽查到的10戶家庭的月用水情況,則下列關(guān)于這10戶家庭的月用水量說法錯(cuò)誤的是()月用水量(噸)4569戶數(shù)(戶)3421A.中位數(shù)是5噸 B.眾數(shù)是5噸 C.極差是3噸 D.平均數(shù)是5.3噸5.某校決定從三名男生和兩名女生中選出兩名同學(xué)擔(dān)任校藝術(shù)節(jié)文藝演出專場(chǎng)的主持人,則選出的恰為一男一女的概率是()A. B. C. D.6.如圖,在⊙O中,O為圓心,點(diǎn)A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°7.如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④8.如圖,中,E是BC的中點(diǎn),設(shè),那么向量用向量表示為()A. B. C. D.9.已知一元二次方程2x2+2x﹣1=0的兩個(gè)根為x1,x2,且x1<x2,下列結(jié)論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=10.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長(zhǎng)是6米,C是OA的中點(diǎn),點(diǎn)D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米211.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長(zhǎng)為半徑畫一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.12.如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個(gè)推斷:①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;②隨著試驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,矩形ABCD的邊AB在x軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB=2,AD=1,點(diǎn)E的坐標(biāo)為(0,2).點(diǎn)F(x,0)在邊AB上運(yùn)動(dòng),若過點(diǎn)E、F的直線將矩形ABCD的周長(zhǎng)分成2:1兩部分,則x的值為__.14.若,,則的值為________.15.同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_____.16.如圖,AC、BD為圓O的兩條垂直的直徑,動(dòng)點(diǎn)P從圓心O出發(fā),沿線段OC-A.B.C.D.17.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點(diǎn)分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.18.不等式組的解集為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買一批足球,已知購(gòu)買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.求A,B兩種品牌的足球的單價(jià).求該校購(gòu)買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.20.(6分)如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).
如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).
(1)當(dāng)x為何值時(shí),OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)21.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(-3,m+8),B(n,-6)兩點(diǎn).求一次函數(shù)與反比例函數(shù)的解析式;求△AOB的面積.22.(8分)已知反比例函數(shù)y=kx的圖象過點(diǎn)(1)試求該反比例函數(shù)的表達(dá)式;(2)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸,交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說明理由.23.(8分)先化簡(jiǎn):,然后從的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.24.(10分)如圖,已知拋物線與x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,,直線l過A、B兩點(diǎn),點(diǎn)D為線段AB上一動(dòng)點(diǎn),過點(diǎn)D作軸于點(diǎn)C,交拋物線于點(diǎn)
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.(3)連接BE,是否存在點(diǎn)D,使得和相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由.25.(10分)某電器商場(chǎng)銷售甲、乙兩種品牌空調(diào),已知每臺(tái)乙種品牌空調(diào)的進(jìn)價(jià)比每臺(tái)甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購(gòu)進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購(gòu)進(jìn)的甲種品牌空調(diào)數(shù)量多2臺(tái).求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);該商場(chǎng)擬用不超過16000元購(gòu)進(jìn)甲、乙兩種品牌空調(diào)共10臺(tái)進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺(tái),乙種品牌空調(diào)的售價(jià)為3500元/臺(tái).請(qǐng)您幫該商場(chǎng)設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10臺(tái)空調(diào)后獲利最大,并求出最大利潤(rùn).26.(12分)如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂.(1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.(2)拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對(duì)應(yīng)的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對(duì)稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請(qǐng)求出yp的取值范圍.若沒有,請(qǐng)說明理由.27.(12分)(5分)計(jì)算:(1
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在主視圖中.【題目詳解】解:從正面看第一層是二個(gè)正方形,第二層是左邊一個(gè)正方形.
故選A.【題目點(diǎn)撥】本題考查了簡(jiǎn)單組合體的三視圖的知識(shí),解題的關(guān)鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎(chǔ)題,難度不大.2、A【解題分析】
根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項(xiàng).【題目詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當(dāng)x<0時(shí),y隨x的增大而減小,錯(cuò)誤;C.此函數(shù)為反比例函數(shù),在每個(gè)象限,y隨x的增大而減小,錯(cuò)誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯(cuò)誤.故選A.【題目點(diǎn)撥】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問題的關(guān)鍵.3、C【解題分析】
列表得出進(jìn)出的所有情況,再?gòu)闹写_定出恰好選擇從同一個(gè)口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計(jì)算可得.【題目詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個(gè)口進(jìn)出的有5種情況,∴恰好選擇從同一個(gè)口進(jìn)出的概率為=,故選C.【題目點(diǎn)撥】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、C【解題分析】
根據(jù)中位數(shù)、眾數(shù)、極差和平均數(shù)的概念,對(duì)選項(xiàng)一一分析,即可選擇正確答案.【題目詳解】解:A、中位數(shù)=(5+5)÷2=5(噸),正確,故選項(xiàng)錯(cuò)誤;B、數(shù)據(jù)5噸出現(xiàn)4次,次數(shù)最多,所以5噸是眾數(shù),正確,故選項(xiàng)錯(cuò)誤;C、極差為9﹣4=5(噸),錯(cuò)誤,故選項(xiàng)正確;D、平均數(shù)=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項(xiàng)錯(cuò)誤.故選:C.【題目點(diǎn)撥】此題主要考查了平均數(shù)、中位數(shù)、眾數(shù)和極差的概念.要掌握這些基本概念才能熟練解題.5、B【解題分析】試題解析:列表如下:∴共有20種等可能的結(jié)果,P(一男一女)=.
故選B.6、B【解題分析】
根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計(jì)算即可.【題目詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【題目點(diǎn)撥】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半是解題的關(guān)鍵.7、B【解題分析】
解:根據(jù)作圖過程,利用線段垂直平分線的性質(zhì)對(duì)各選項(xiàng)進(jìn)行判斷:根據(jù)作圖過程可知:PB=CP,∵D為BC的中點(diǎn),∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點(diǎn),∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯(cuò)誤;④ED=AB正確.∴正確的有①②④.故選B.考點(diǎn):線段垂直平分線的性質(zhì).8、A【解題分析】
根據(jù),只要求出即可解決問題.【題目詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【題目點(diǎn)撥】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.9、D【解題分析】【分析】直接利用根與系數(shù)的關(guān)系對(duì)A、B進(jìn)行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號(hào),且負(fù)數(shù)的絕對(duì)值大,則可對(duì)C進(jìn)行判斷;利用一元二次方程解的定義對(duì)D進(jìn)行判斷.【題目詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項(xiàng)錯(cuò)誤;∵x1+x2<0,x1x2<0,∴x1、x2異號(hào),且負(fù)數(shù)的絕對(duì)值大,故C選項(xiàng)錯(cuò)誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項(xiàng)正確,故選D.【題目點(diǎn)撥】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關(guān)系,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.10、C【解題分析】
連接OD,∵弧AB的半徑OA長(zhǎng)是6米,C是OA的中點(diǎn),∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.11、C【解題分析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是記住扇形的面積公式:S=.12、B【解題分析】①當(dāng)頻數(shù)增大時(shí),頻率逐漸穩(wěn)定的值即為概率,500次的實(shí)驗(yàn)次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯(cuò)誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計(jì)頻率為0.618,正確;③.這個(gè)實(shí)驗(yàn)是一個(gè)隨機(jī)試驗(yàn),當(dāng)投擲次數(shù)為1000時(shí),釘尖向上”的概率不一定是0.1.錯(cuò)誤,故選B.【題目點(diǎn)撥】本題考查了利用頻率估計(jì)概率,能正確理解相關(guān)概念是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、或﹣.【解題分析】
試題分析:當(dāng)點(diǎn)F在OB上時(shí),設(shè)EF交CD于點(diǎn)P,可求點(diǎn)P的坐標(biāo)為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對(duì)稱性可求當(dāng)點(diǎn)F在OA上時(shí),x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【題目點(diǎn)撥】考點(diǎn):動(dòng)點(diǎn)問題.14、-.【解題分析】分析:已知第一個(gè)等式左邊利用平方差公式化簡(jiǎn),將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點(diǎn)睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關(guān)鍵.15、【解題分析】
先畫出同一個(gè)圓的內(nèi)接正方形和內(nèi)接正三角形,設(shè)⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【題目詳解】設(shè)⊙O的半徑為r,⊙O的內(nèi)接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設(shè)⊙O的內(nèi)接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【題目點(diǎn)撥】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質(zhì)、正方形的性質(zhì)等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵.16、C.【解題分析】分析:根據(jù)動(dòng)點(diǎn)P在OC上運(yùn)動(dòng)時(shí),∠APB逐漸減小,當(dāng)P在上運(yùn)動(dòng)時(shí),∠APB不變,當(dāng)P在DO上運(yùn)動(dòng)時(shí),∠APB逐漸增大,即可得出答案.解答:解:當(dāng)動(dòng)點(diǎn)P在OC上運(yùn)動(dòng)時(shí),∠APB逐漸減??;當(dāng)P在上運(yùn)動(dòng)時(shí),∠APB不變;當(dāng)P在DO上運(yùn)動(dòng)時(shí),∠APB逐漸增大.故選C.17、【解題分析】
由題意先求出DG和FG的長(zhǎng),再根據(jù)勾股定理可求得DF的長(zhǎng),然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長(zhǎng),最后依據(jù)矩形的面積公式求解即可.【題目詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【題目點(diǎn)撥】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關(guān)性質(zhì)定理與判定定理是解題的關(guān)鍵.18、1<x≤1【解題分析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式組解集為:1<x≤1,故答案為1<x≤1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)一個(gè)A品牌的足球需90元,則一個(gè)B品牌的足球需100元;(2)1.【解題分析】
(1)設(shè)一個(gè)A品牌的足球需x元,則一個(gè)B品牌的足球需y元,根據(jù)“購(gòu)買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數(shù)據(jù)代入求值即可.【題目詳解】(1)設(shè)一個(gè)A品牌的足球需x元,則一個(gè)B品牌的足球需y元,依題意得:,解得:.答:一個(gè)A品牌的足球需40元,則一個(gè)B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購(gòu)買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用是1元.考點(diǎn):二元一次方程組的應(yīng)用.20、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【解題分析】
(1)由于O是EF中點(diǎn),因此當(dāng)P為FG中點(diǎn)時(shí),OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來(lái)得出四邊形AHPO的面積.三角形AHF中,AH的長(zhǎng)可用AF的長(zhǎng)和∠FAH的余弦值求出,同理可求出FH的表達(dá)式(也可用相似三角形來(lái)得出AH、FH的長(zhǎng)).三角形OFP中,可過O作OD⊥FP于D,PF的長(zhǎng)易知,而OD的長(zhǎng),可根據(jù)OF的長(zhǎng)和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【題目詳解】解:(1)∵Rt△EFG∽R(shí)t△ABC∴,即,∴FG==3cm∵當(dāng)P為FG的中點(diǎn)時(shí),OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當(dāng)x為1.5s時(shí),OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點(diǎn)O作OD⊥FP,垂足為D∵點(diǎn)O為EF中點(diǎn)∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時(shí)刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【題目點(diǎn)撥】本題是比較常規(guī)的動(dòng)態(tài)幾何壓軸題,第1小題運(yùn)用相似形的知識(shí)容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無(wú)論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個(gè)方程就能解決.21、(1)y=-,y=-2x-1(2)1【解題分析】試題分析:(1)將點(diǎn)A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點(diǎn)A的坐標(biāo)以及反比例函數(shù)解析式,再將點(diǎn)B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;(2)設(shè)AB與x軸相交于點(diǎn)C,根據(jù)一次函數(shù)解析式求出點(diǎn)C的坐標(biāo),從而得到點(diǎn)OC的長(zhǎng)度,再根據(jù)S△AOB=S△AOC+S△BOC列式計(jì)算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數(shù)y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點(diǎn)A的坐標(biāo)為(﹣3,2),反比例函數(shù)解析式為y=﹣,將點(diǎn)B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點(diǎn)B的坐標(biāo)為(1,﹣6),將點(diǎn)A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數(shù)解析式為y=﹣2x﹣1;(2)設(shè)AB與x軸相交于點(diǎn)C,令﹣2x﹣1=0解得x=﹣2,所以,點(diǎn)C的坐標(biāo)為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.22、(1)y=6x;(2)MB=【解題分析】
(1)將A(3,2)分別代入y=kx
,y=ax中,得a、k(2)有S△OMB=S△OAC=12×k=3
,可得矩形OBDC的面積為12;即OC×OB=12
;進(jìn)而可得m、n的值,故可得BM與DM【題目詳解】(1)將A(3,2)代入y=kx中,得2=k∴反比例函數(shù)的表達(dá)式為y=6(2)BM=DM,理由:∵S△OMB=S△OAC=12×k∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴m=6∴MB=32,MD=3-32=3【題目點(diǎn)撥】本題考查了待定系數(shù)法求反比例函數(shù)和正比例函數(shù)解析式,反比例函數(shù)比例系數(shù)的幾何意義,矩形的性質(zhì)等知識(shí).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,掌握反比例函數(shù)系數(shù)的幾何意義是解(2)的關(guān)鍵.23、,當(dāng)x=1時(shí),原式=﹣1.【解題分析】
先化簡(jiǎn)分式,然后將x的值代入計(jì)算即可.【題目詳解】解:原式==.且,∴x的整數(shù)有,∴取,當(dāng)時(shí),原式.【題目點(diǎn)撥】本題考查了分式的化簡(jiǎn)求值,熟練掌握分式混合運(yùn)算法則是解題的關(guān)鍵.24、(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【解題分析】
利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A、B的坐標(biāo),結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;由點(diǎn)A、B的坐標(biāo)可得出直線AB的解析式待定系數(shù)法,由點(diǎn)D的橫坐標(biāo)可得出點(diǎn)D、E的坐標(biāo),進(jìn)而可得出DE的長(zhǎng)度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,進(jìn)而可得出DE、BD的長(zhǎng)度當(dāng)時(shí),利用等腰直角三角形的性質(zhì)可得出,進(jìn)而可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時(shí),由點(diǎn)B的縱坐標(biāo)可得出點(diǎn)E的縱坐標(biāo)為4,結(jié)合點(diǎn)E的坐標(biāo)即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.【題目詳解】當(dāng)時(shí),有,解得:,,點(diǎn)A的坐標(biāo)為.當(dāng)時(shí),,點(diǎn)B的坐標(biāo)為.,,解得:,拋物線的解析式為.點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,直線AB的解析式為.點(diǎn)D的橫坐標(biāo)為x,則點(diǎn)D的坐標(biāo)為,點(diǎn)E的坐標(biāo)為,如圖.點(diǎn)F的坐標(biāo)為,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,,,,.,當(dāng)時(shí),S取最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為,與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.,,若要和相似,只需或如圖.設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,,當(dāng)時(shí),,,,為等腰直角三角形.,即,解得:舍去,,點(diǎn)D的坐標(biāo)為;當(dāng)時(shí),點(diǎn)E的縱坐標(biāo)為4,,解得:,舍去,點(diǎn)D的坐標(biāo)為.綜上所述:存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.故答案為:(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【題目點(diǎn)撥】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關(guān)鍵是:利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)A、B的坐標(biāo);利用三角形的面積找出S關(guān)于x的函數(shù)關(guān)系式;分及兩種情況求出點(diǎn)D的坐標(biāo).25、(1)甲種品牌的進(jìn)價(jià)為1500元,乙種品牌空調(diào)的進(jìn)價(jià)為1800元;(2)當(dāng)購(gòu)進(jìn)甲種品牌空調(diào)7臺(tái),乙種品牌空調(diào)3臺(tái)時(shí),售完后利潤(rùn)最大,最大為12100元【解題分析】
(1)設(shè)甲種品牌空調(diào)的進(jìn)貨價(jià)為x元/臺(tái),則乙種品牌空調(diào)的進(jìn)貨價(jià)為1.2x元/臺(tái),根據(jù)數(shù)量=總價(jià)÷單價(jià)可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;(2)設(shè)購(gòu)進(jìn)甲種品牌空調(diào)a臺(tái),所獲得的利潤(rùn)為y元,則購(gòu)進(jìn)乙種品牌空調(diào)(10-a)臺(tái),根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總價(jià)不超過16000元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤(rùn)=單臺(tái)利潤(rùn)×購(gòu)進(jìn)數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【題目詳解】(1)由(1)設(shè)甲種品牌的進(jìn)價(jià)為x元,則乙種品牌空調(diào)的進(jìn)價(jià)為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗(yàn),x=1500是原分式方程的解,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江宇翔職業(yè)技術(shù)學(xué)院《公路工程定額原理與計(jì)價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工業(yè)職業(yè)技術(shù)學(xué)院《采購(gòu)過程演練》2023-2024學(xué)年第一學(xué)期期末試卷
- 反諧振阻抗比較小的原因
- 中國(guó)傳媒大學(xué)《計(jì)算機(jī)電子電路基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)治醫(yī)學(xué)院《劇場(chǎng)品牌管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南司法警官職業(yè)學(xué)院《體育-臺(tái)球》2023-2024學(xué)年第一學(xué)期期末試卷
- 企業(yè)內(nèi)部知識(shí)分享平臺(tái)構(gòu)建方案
- 保險(xiǎn)行業(yè)數(shù)字營(yíng)銷模板
- 拿破侖歷史名人人物介紹
- 中考誓師大會(huì)學(xué)生發(fā)言稿
- 小學(xué)數(shù)學(xué)二年級(jí)100以內(nèi)連加連減口算題
- 建設(shè)單位如何做好項(xiàng)目管理
- 三年級(jí)上遞等式計(jì)算400題
- 一次性餐具配送投標(biāo)方案
- 2024年原發(fā)性肝癌中醫(yī)診療指南
- 2024醫(yī)療建筑韌性設(shè)計(jì)導(dǎo)則
- 軍隊(duì)文職半年述職報(bào)告
- 鑄牢中華民族共同體意識(shí)-考試復(fù)習(xí)題庫(kù)(含答案)
- 2024年浙江首考高考選考生物試卷試題真題(含答案詳解)
- 天津市紅橋區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末地理試題
- 西門子數(shù)字化工廠-數(shù)字化車間-先進(jìn)制造技術(shù)
評(píng)論
0/150
提交評(píng)論