認(rèn)知無線網(wǎng)絡(luò)中頻譜容量與頻譜業(yè)務(wù)建模關(guān)鍵技術(shù)研究的中期報告_第1頁
認(rèn)知無線網(wǎng)絡(luò)中頻譜容量與頻譜業(yè)務(wù)建模關(guān)鍵技術(shù)研究的中期報告_第2頁
認(rèn)知無線網(wǎng)絡(luò)中頻譜容量與頻譜業(yè)務(wù)建模關(guān)鍵技術(shù)研究的中期報告_第3頁
認(rèn)知無線網(wǎng)絡(luò)中頻譜容量與頻譜業(yè)務(wù)建模關(guān)鍵技術(shù)研究的中期報告_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

認(rèn)知無線網(wǎng)絡(luò)中頻譜容量與頻譜業(yè)務(wù)建模關(guān)鍵技術(shù)研究的中期報告Abstract:Cognitiveradio(CR)allowsunlicenseduserstoaccessunderutilizedlicensedspectrumbydynamicallymodifyingtransmissionparametersandadaptingtochangingenvironment.Inordertomaximizetheutilizationofspectrumresources,itisnecessarytostudythecapacityandmodelingofspectrumaccess.Thispaperpresentsamid-termreportonthekeytechnologiesforstudyingthespectrumcapacityandmodelingofspectrumaccessincognitivewirelessnetworks.Thepaperfirstintroducestheresearchbackgroundofcognitivewirelessnetworks,anddiscussestheresearchstatusandchallengesofspectrumcapacityandmodeling.Then,thepaperpresentsthecurrentresearchmethodsandtechnicalroutes,includingmachinelearning,gametheoryandmathematicalmodeling.Finally,thepaperproposesthefutureresearchdirectionsandthetechnicalchallengesinthefieldofcognitivewirelessnetworks.Keywords:cognitiveradio,spectrumcapacity,spectrummodeling,machinelearning,gametheory,mathematicalmodelingIntroduction:Withtherapiddevelopmentofwirelesscommunicationtechnologyandtheexplosivegrowthofwirelesscommunicationservices,thedemandforwirelessspectrumresourceshasbecomeincreasinglyurgent.However,thefrequencyspectrumisalimitedresourceandhasbeenfullyorheavilyutilizedinmanyregionsandservices.Cognitiveradiotechnologyhasemergedasapromisingsolutiontothespectrumscarcityproblem.Cognitiveradioreferstothewirelesscommunicationtechnologythatallowsunlicenseduserstoaccessunderutilizedlicensedspectrumbydynamicallymodifyingtransmissionparametersandadaptingtochangingenvironment.Cognitivewirelessnetworkisanintelligentwirelessnetworkthatsupportscognitiveradiotechnology,andcaneffectivelyusespectrumresourcesandimprovetheoverallperformanceofwirelesscommunication.However,thekeytothesuccessofcognitivewirelessnetworksliesinthespectrumcapacityandmodelingofspectrumaccess.ResearchStatusandChallenges:Theresearchonspectrumcapacityandmodelingincognitivewirelessnetworkshasbeenahottopicinrecentyears.Variousresearchmethodsandtechnicalrouteshavebeenproposed.Machinelearningisapopularapproachforspectrummodelingincognitivewirelessnetworks.Machinelearningalgorithmscanlearnthepatternsandrulesofspectrumusagefromhistoricaldataandadapttodynamicandcomplexspectrumenvironment.Gametheoryisanotherwidelyusedmethodforstudyingthespectrumaccessbehaviorofcognitiveradiousers.Gametheorycanmodeltheinteractionandcompetitionbetweendifferentcognitiveradiousers,andanalyzetheequilibriumstrategyandperformanceofthesystem.Mathematicalmodelingisatraditionalandeffectiveapproachforanalyzingspectrumcapacityandmodelingincognitivewirelessnetworks.Mathematicalmodelscanaccuratelyandquantitativelydescribethespectrumaccessbehaviorandperformanceofcognitiveradiosystems.However,therearestillmanychallengesintheresearchofspectrumcapacityandmodelingincognitivewirelessnetworks.First,thespectrumenvironmentisdynamicandcomplex,anditisdifficulttoaccuratelymodelandpredictthespectrumusage.Second,thespectrumaccessbehaviorofcognitiveradiousersisinfluencedbymanyfactors,suchastheperformanceofprimaryusers,theinterferencefromothercognitiveradiousers,andthenetworktopology.Itisnecessarytoconsiderthesefactorsandconstructacomprehensiveandrealisticspectrummodelingframework.Third,thedesignofefficientandaccuratespectrumsensingandspectrumsharingalgorithmsiscrucialfortheperformanceofcognitiveradiosystems.ResearchMethodsandTechnicalRoutes:Thecurrentresearchmethodsandtechnicalroutesforspectrumcapacityandmodelingincognitivewirelessnetworksmainlyincludemachinelearning,gametheoryandmathematicalmodeling.Machinelearningisapopularapproachformodelingandpredictingspectrumusageincognitivewirelessnetworks.Machinelearningalgorithms,suchasartificialneuralnetworks,decisiontreesandsupportvectormachines,canlearnthepatternsandrulesofspectrumusagefromhistoricaldataandadapttochangingspectrumenvironment.Thekeychallengeofmachinelearning-basedspectrummodelingistodesignefficientandaccuratefeatureextractionandselectionmethods.Gametheoryisanotherwidelyusedmethodforstudyingthespectrumaccessbehaviorofcognitiveradiousers.Gametheorycanmodeltheinteractionandcompetitionbetweendifferentcognitiveradiousers,andanalyzetheequilibriumstrategyandperformanceofthesystem.Thekeychallengeofgametheory-basedspectrummodelingistodesignappropriategamemodelsthatcanaccuratelyreflectthespectrumaccessbehaviorofcognitiveradiousers.Mathematicalmodelingisatraditionalandeffectiveapproachforanalyzingspectrumcapacityandmodelingincognitivewirelessnetworks.Mathematicalmodelscanaccuratelyandquantitativelydescribethespectrumaccessbehaviorandperformanceofcognitiveradiosystems.Thekeychallengeofmathematicalmodeling-basedspectrummodelingistodesignappropriateanalyticalmodelsthatcanaccuratelycapturethecomplexanddynamicspectrumenvironment.FutureResearchDirectionsandTechnicalChallenges:Theresearchonspectrumcapacityandmodelingincognitivewirelessnetworksisstillinitsearlystage,andtherearemanychallengesandopportunitiesinthisfield.Futureresearchdirectionsandtechnicalchallengesinclude:1.Developmentofnewalgorithmsandtechniquesforspectrumsensingandspectrumsharingincognitiveradiosystems.2.Designofefficientandaccuratespectrummodelingandpredictionmethodsbasedonmachinelearning,gametheoryandmathematicalmodeling.3.Studyoftheimpactofnetworktopology,primaryuserbehaviorandinterferenceonthespectrumaccessbehaviorofcognitiveradiousers.4.Investigationofthesecurityandprivacyissuesincognitiveradiosystems,anddevelopmentofsecureandreliablespectrumaccessmechanisms.5.Developmentofcognitiveradio-basedapplicationsandservices,suchassmartgrid,intelligenttransportationsystems,andwirelessbroadbandaccess.Conclusion:Thispaperpresentsamid-termrepo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論