下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
認(rèn)知無線網(wǎng)絡(luò)中頻譜容量與頻譜業(yè)務(wù)建模關(guān)鍵技術(shù)研究的中期報告Abstract:Cognitiveradio(CR)allowsunlicenseduserstoaccessunderutilizedlicensedspectrumbydynamicallymodifyingtransmissionparametersandadaptingtochangingenvironment.Inordertomaximizetheutilizationofspectrumresources,itisnecessarytostudythecapacityandmodelingofspectrumaccess.Thispaperpresentsamid-termreportonthekeytechnologiesforstudyingthespectrumcapacityandmodelingofspectrumaccessincognitivewirelessnetworks.Thepaperfirstintroducestheresearchbackgroundofcognitivewirelessnetworks,anddiscussestheresearchstatusandchallengesofspectrumcapacityandmodeling.Then,thepaperpresentsthecurrentresearchmethodsandtechnicalroutes,includingmachinelearning,gametheoryandmathematicalmodeling.Finally,thepaperproposesthefutureresearchdirectionsandthetechnicalchallengesinthefieldofcognitivewirelessnetworks.Keywords:cognitiveradio,spectrumcapacity,spectrummodeling,machinelearning,gametheory,mathematicalmodelingIntroduction:Withtherapiddevelopmentofwirelesscommunicationtechnologyandtheexplosivegrowthofwirelesscommunicationservices,thedemandforwirelessspectrumresourceshasbecomeincreasinglyurgent.However,thefrequencyspectrumisalimitedresourceandhasbeenfullyorheavilyutilizedinmanyregionsandservices.Cognitiveradiotechnologyhasemergedasapromisingsolutiontothespectrumscarcityproblem.Cognitiveradioreferstothewirelesscommunicationtechnologythatallowsunlicenseduserstoaccessunderutilizedlicensedspectrumbydynamicallymodifyingtransmissionparametersandadaptingtochangingenvironment.Cognitivewirelessnetworkisanintelligentwirelessnetworkthatsupportscognitiveradiotechnology,andcaneffectivelyusespectrumresourcesandimprovetheoverallperformanceofwirelesscommunication.However,thekeytothesuccessofcognitivewirelessnetworksliesinthespectrumcapacityandmodelingofspectrumaccess.ResearchStatusandChallenges:Theresearchonspectrumcapacityandmodelingincognitivewirelessnetworkshasbeenahottopicinrecentyears.Variousresearchmethodsandtechnicalrouteshavebeenproposed.Machinelearningisapopularapproachforspectrummodelingincognitivewirelessnetworks.Machinelearningalgorithmscanlearnthepatternsandrulesofspectrumusagefromhistoricaldataandadapttodynamicandcomplexspectrumenvironment.Gametheoryisanotherwidelyusedmethodforstudyingthespectrumaccessbehaviorofcognitiveradiousers.Gametheorycanmodeltheinteractionandcompetitionbetweendifferentcognitiveradiousers,andanalyzetheequilibriumstrategyandperformanceofthesystem.Mathematicalmodelingisatraditionalandeffectiveapproachforanalyzingspectrumcapacityandmodelingincognitivewirelessnetworks.Mathematicalmodelscanaccuratelyandquantitativelydescribethespectrumaccessbehaviorandperformanceofcognitiveradiosystems.However,therearestillmanychallengesintheresearchofspectrumcapacityandmodelingincognitivewirelessnetworks.First,thespectrumenvironmentisdynamicandcomplex,anditisdifficulttoaccuratelymodelandpredictthespectrumusage.Second,thespectrumaccessbehaviorofcognitiveradiousersisinfluencedbymanyfactors,suchastheperformanceofprimaryusers,theinterferencefromothercognitiveradiousers,andthenetworktopology.Itisnecessarytoconsiderthesefactorsandconstructacomprehensiveandrealisticspectrummodelingframework.Third,thedesignofefficientandaccuratespectrumsensingandspectrumsharingalgorithmsiscrucialfortheperformanceofcognitiveradiosystems.ResearchMethodsandTechnicalRoutes:Thecurrentresearchmethodsandtechnicalroutesforspectrumcapacityandmodelingincognitivewirelessnetworksmainlyincludemachinelearning,gametheoryandmathematicalmodeling.Machinelearningisapopularapproachformodelingandpredictingspectrumusageincognitivewirelessnetworks.Machinelearningalgorithms,suchasartificialneuralnetworks,decisiontreesandsupportvectormachines,canlearnthepatternsandrulesofspectrumusagefromhistoricaldataandadapttochangingspectrumenvironment.Thekeychallengeofmachinelearning-basedspectrummodelingistodesignefficientandaccuratefeatureextractionandselectionmethods.Gametheoryisanotherwidelyusedmethodforstudyingthespectrumaccessbehaviorofcognitiveradiousers.Gametheorycanmodeltheinteractionandcompetitionbetweendifferentcognitiveradiousers,andanalyzetheequilibriumstrategyandperformanceofthesystem.Thekeychallengeofgametheory-basedspectrummodelingistodesignappropriategamemodelsthatcanaccuratelyreflectthespectrumaccessbehaviorofcognitiveradiousers.Mathematicalmodelingisatraditionalandeffectiveapproachforanalyzingspectrumcapacityandmodelingincognitivewirelessnetworks.Mathematicalmodelscanaccuratelyandquantitativelydescribethespectrumaccessbehaviorandperformanceofcognitiveradiosystems.Thekeychallengeofmathematicalmodeling-basedspectrummodelingistodesignappropriateanalyticalmodelsthatcanaccuratelycapturethecomplexanddynamicspectrumenvironment.FutureResearchDirectionsandTechnicalChallenges:Theresearchonspectrumcapacityandmodelingincognitivewirelessnetworksisstillinitsearlystage,andtherearemanychallengesandopportunitiesinthisfield.Futureresearchdirectionsandtechnicalchallengesinclude:1.Developmentofnewalgorithmsandtechniquesforspectrumsensingandspectrumsharingincognitiveradiosystems.2.Designofefficientandaccuratespectrummodelingandpredictionmethodsbasedonmachinelearning,gametheoryandmathematicalmodeling.3.Studyoftheimpactofnetworktopology,primaryuserbehaviorandinterferenceonthespectrumaccessbehaviorofcognitiveradiousers.4.Investigationofthesecurityandprivacyissuesincognitiveradiosystems,anddevelopmentofsecureandreliablespectrumaccessmechanisms.5.Developmentofcognitiveradio-basedapplicationsandservices,suchassmartgrid,intelligenttransportationsystems,andwirelessbroadbandaccess.Conclusion:Thispaperpresentsamid-termrepo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度綠色建筑施工現(xiàn)場環(huán)保施工監(jiān)管合同3篇
- 2024年度高端摩托車租賃服務(wù)合作協(xié)議2篇
- 2024年武漢地區(qū)記賬代理業(yè)務(wù)協(xié)議樣本版B版
- 2024年度建筑工程施工合同綠色施工與節(jié)能要求3篇
- 漯河醫(yī)學(xué)高等??茖W(xué)?!恫牧吓c工藝(陶瓷)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度水利工程圍板定制與水利設(shè)施保護(hù)協(xié)議3篇
- 2024年標(biāo)準(zhǔn)個人借款與連帶責(zé)任擔(dān)保協(xié)議版B版
- 2024年版智能交通系統(tǒng)研發(fā)與實(shí)施合同
- 2024年度實(shí)習(xí)培訓(xùn)生崗位實(shí)習(xí)協(xié)議書模板集錦2篇
- 2024年度室內(nèi)木門行業(yè)聯(lián)盟合作發(fā)展合同3篇
- GB/T 617-2006化學(xué)試劑熔點(diǎn)范圍測定通用方法
- GB/T 16311-1996道路交通標(biāo)線質(zhì)量要求和檢測方法
- 中國民俗禮儀課程
- 魚的人工繁殖技術(shù)課件
- 高級會計師評審個人業(yè)績報告(精選9篇)
- 基建類試題及答案
- 停窯檢修的十大黃金準(zhǔn)則
- 惡性胸膜間皮瘤診治進(jìn)展 華晶
- 睡眠呼吸暫停綜合癥與心血管疾病
- 英語口語 購物課件
- 《劇目》課程標(biāo)準(zhǔn)(高職)
評論
0/150
提交評論