江西省上饒市鉛山一中、橫峰中學(xué)、廣豐貞白中學(xué)2024屆數(shù)學(xué)高一上期末綜合測試試題含解析_第1頁
江西省上饒市鉛山一中、橫峰中學(xué)、廣豐貞白中學(xué)2024屆數(shù)學(xué)高一上期末綜合測試試題含解析_第2頁
江西省上饒市鉛山一中、橫峰中學(xué)、廣豐貞白中學(xué)2024屆數(shù)學(xué)高一上期末綜合測試試題含解析_第3頁
江西省上饒市鉛山一中、橫峰中學(xué)、廣豐貞白中學(xué)2024屆數(shù)學(xué)高一上期末綜合測試試題含解析_第4頁
江西省上饒市鉛山一中、橫峰中學(xué)、廣豐貞白中學(xué)2024屆數(shù)學(xué)高一上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省上饒市鉛山一中、橫峰中學(xué)、廣豐貞白中學(xué)2024屆數(shù)學(xué)高一上期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.函數(shù)在區(qū)間上的簡圖是()A. B.C. D.2.下列表示正確的是A.0∈N B.∈NC.–3∈N D.π∈Q3.函數(shù)的零點所在區(qū)間是()A B.C. D.4.如圖是函數(shù)在一個周期內(nèi)的圖象,則其解析式是()A. B.C. D.5.已知函數(shù)在上存在零點,則的取值范圍為()A. B.C. D.6.函數(shù)在的圖象大致為()A. B.C. D.7.若,則為()A. B.C. D.8.三個數(shù),,的大小順序是A. B.C. D.9.已知函數(shù),則A.0 B.1C. D.210.已知函數(shù),則()A. B.C. D.11.已知函數(shù)(,,,)的圖象(部分)如圖所示,則的解析式是A. B.C. D.12.命題“,”的否定是()A., B.,C., D.,二、填空題(本大題共4小題,共20分)13.已知函數(shù)是偶函數(shù),則實數(shù)的值是__________14.已知正數(shù)a,b滿足,則的最小值為______15.已知函數(shù)(為常數(shù))是奇函數(shù).(1)求的值與函數(shù)的定義域.(2)若當(dāng)時,恒成立.求實數(shù)的取值范圍.16.在某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各個選項中,一定符合上述指標(biāo)的是__________(填寫序號)①平均數(shù);②標(biāo)準(zhǔn)差;③平均數(shù)且極差小于或等于2;④平均數(shù)且標(biāo)準(zhǔn)差;⑤眾數(shù)等于1且極差小于或等于4三、解答題(本大題共6小題,共70分)17.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.18.如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,點E是PD的中點.(1)求證:PB//平面AEC;(2)求D到平面AEC的距離.19.在三棱錐中,和是邊長為的等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.20.已知的圖象上相鄰兩對稱軸的距離為.(1)若,求的遞增區(qū)間;(2)若時,若的最大值與最小值之和為5,求的值.21.已知函數(shù).(1)判斷函數(shù)在R上的單調(diào)性,并用單調(diào)性的定義證明;(2)判斷函數(shù)的奇偶性,并證明;(3)若恒成立,求實數(shù)k的取值范圍.22.已知集合.(1)若,求;(2)若,求實數(shù)m的取值范圍.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】分別取,代入函數(shù)中得到值,對比圖象即可利用排除法得到答案.【詳解】當(dāng)時,,排除A、D;當(dāng)時,,排除C.故選:B.2、A【解析】根據(jù)自然數(shù)集以及有理數(shù)集的含義判斷數(shù)與集合關(guān)系.【詳解】N表示自然數(shù)集,在A中,0∈N,故A正確;在B中,,故B錯誤;在C中,–3?N,故C錯誤;Q表示有理數(shù)集,在D中,π?Q,故D錯誤故選A【點睛】本題考查自然數(shù)集、有理數(shù)集的含義以及數(shù)與集合關(guān)系判斷,考查基本分析判斷能力,屬基礎(chǔ)題.3、C【解析】利用零點存在定理可得出結(jié)論.【詳解】函數(shù)在上單調(diào)遞增,因為,,,,所以,函數(shù)的零點所在區(qū)間是.故選:C.4、B【解析】通過函數(shù)的圖象可得到:A=3,,,則,然后再利用點在圖象上求解.,【詳解】由函數(shù)的圖象可知:A=3,,,所以,又點在圖象上,所以,即,所以,即,因為,所以所以故選:B【點睛】本題主要考查利用三角函數(shù)的圖象求解析式,還考查了運算求解的能力,屬于中檔題.5、A【解析】根據(jù)零點存在定理及函數(shù)單調(diào)性可知,,解不等式組即可求得的取值范圍.【詳解】因為在上單調(diào)遞增,根據(jù)零點存在定理可得,解得.故選:A【點睛】本題考查了函數(shù)單調(diào)性的判斷,零點存在定理的應(yīng)用,根據(jù)零點所在區(qū)間求參數(shù)的取值范圍,屬于基礎(chǔ)題.6、A【解析】根據(jù)函數(shù)解析式,結(jié)合特殊值,即可判斷函數(shù)圖象.【詳解】設(shè),則,故為上的偶函數(shù),故排除B又,,排除C、D故選:A.【點睛】本題考查圖象識別,注意從函數(shù)的奇偶性、單調(diào)性和特殊點函數(shù)值的正負等方面去判斷,本題屬于中檔題.7、A【解析】根據(jù)對數(shù)換底公式,結(jié)合指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性直接判斷.【詳解】由對數(shù)函數(shù)的單調(diào)性可知,即,且,,且,又,即,所以,又根據(jù)指數(shù)函數(shù)的單調(diào)性可得,所以,故選:A.8、A【解析】由指數(shù)函數(shù)和對數(shù)函數(shù)單調(diào)性得出范圍,從而得出結(jié)果【詳解】,,;故選A【點睛】本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,熟記函數(shù)性質(zhì)是解題的關(guān)鍵,是基礎(chǔ)題.9、B【解析】,選B.10、B【解析】由分段函數(shù)解析式及指數(shù)運算求函數(shù)值即可.【詳解】由題設(shè),,所以.故選:B.11、C【解析】根據(jù)圖象可知,利用正弦型函數(shù)可求得;根據(jù)最大值和最小值可確定,利用及可求得,從而得到函數(shù)解析式.【詳解】由圖象可知,的最小正周期:又又,且,,即,本題正確選項:【點睛】本題考查根據(jù)圖象求解三角函數(shù)解析式的問題,關(guān)鍵是能夠明確由最大值和最小值確定;由周期確定;通常通過最值點來進行求解,屬于??碱}型.12、C【解析】利用全稱量詞的命題的否定解答即可.【詳解】解:因為全稱量詞的命題的否定是存在量詞的命題,命題“,”是全稱量詞的命題,所以其否定是“,”.故選:C二、填空題(本大題共4小題,共20分)13、1【解析】函數(shù)是偶函數(shù),,即,解得,故答案為.【方法點睛】本題主要考查函數(shù)的奇偶性,屬于中檔題.已知函數(shù)的奇偶性求參數(shù),主要方法有兩個,一是利用:(1)奇函數(shù)由恒成立求解,(2)偶函數(shù)由恒成立求解;二是利用特殊值:奇函數(shù)一般由求解,偶函數(shù)一般由求解,用特殊法求解參數(shù)后,一定要注意驗證奇偶性14、##【解析】右邊化簡可得,利用基本不等式,計算化簡即可求得結(jié)果.【詳解】,故,則,當(dāng)且僅當(dāng)時,等號成立故答案為:15、(1),定義域為或;(2).【解析】(1)根據(jù)函數(shù)是奇函數(shù),得到,求出,再解不等式,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質(zhì),求出的最小值,即可得出結(jié)果.【詳解】(1)因為函數(shù)是奇函數(shù),所以,所以,即,所以,令,解得或,所以函數(shù)的定義域為或;(2),當(dāng)時,所以,所以.因為,恒成立,所以,所以的取值范圍是.【點睛】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于??碱}型.16、③⑤【解析】按照平均數(shù)、極差、方差依次分析各序號即可.【詳解】連續(xù)7天新增病例數(shù):0,0,0,0,2,6,6,平均數(shù)是2<3,①錯;連續(xù)7天新增病例數(shù):6,6,6,6,6,6,6,標(biāo)準(zhǔn)差是0<2,②錯;平均數(shù)且極差小于或等于2,單日最多增加4人,若有一日增加5人,其他天最少增加3人,不滿足平均數(shù),所以單日最多增加4人,③對;連續(xù)7天新增病例數(shù):0,3,3,3,3,3,6,平均數(shù)是3且標(biāo)準(zhǔn)差小于2,④錯;眾數(shù)等于1且極差小于或等于4,最大數(shù)不會超過5,⑤對.故答案為:③⑤.三、解答題(本大題共6小題,共70分)17、(Ⅰ)見解析(Ⅱ)【解析】(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結(jié)果試題解析:(1)證明:連結(jié)AC1交A1C于點F,則F為AC1中點又D是AB中點,連結(jié)DF,則BC1∥DF.3分因DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積18、(1)證明見解析(2)【解析】(1)連接交于,連接,則可得,再由E是PD的中點,則可利用三角形中位線定理可得∥,然后利用線面平行的判定定理可證得結(jié)論;(2)由已知條件可證明,都為直角三角形,所以可求出,從而可求出的面積,然后利用等體積法可求出D到平面AEC的距離.【小問1詳解】連接交于,連接,因為四邊形為平行四邊形,所以,因為點E是PD的中點,所以∥,因為平面,平面,所以∥平面,【小問2詳解】因為∥,,所以,,因為平面,平面,所以,因為,、平面,所以平面,因為平面,所以,在直角中,,同理,在等腰中,,取的中點,連接,則∥,,因平面,所以平面,,設(shè)D到平面AEC的距離為,由,得,所以,得,所以D到平面AEC距離為19、(1)證明見解析;(2)證明見解析;(3).【解析】(1)欲證線面平行,則需證直線與平面內(nèi)的一條直線平行.由題可證,則證得平面;(2)欲證線面垂直,則需證直線垂直于平面內(nèi)的兩條相交直線.連接,可證得,從而可證得平面;(3)由(2)可知,為三棱錐的高,平面為三棱錐的底面,應(yīng)用椎體體積公式即可求解.【詳解】(1)證明:分別是的中點,又平面,平面平面(2)如圖,連接,,是的中點,同理又,又平面(3)由(2)可知,為三棱錐的高,且,.【點睛】本題考查線面平行,線面垂直的判定定理以及椎體體積公式的應(yīng)用,考查空間想象能力與思維能力,屬中檔題.20、(1)增區(qū)間是[kπ-,kπ+],k∈Z(2)【解析】首先根據(jù)已知條件,求出周期,進而求出的值,確定出函數(shù)解析式,由正弦函數(shù)的遞增區(qū)間,,即可求出的遞增區(qū)間由確定出的函數(shù)解析式,根據(jù)的范圍求出這個角的范圍,利用正弦函數(shù)的圖象與性質(zhì)即可求出函數(shù)的最大值,即可得到的值解析:已知由,則T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ則-+kπ≤x≤+kπ故f(x)的增區(qū)間是[kπ-,kπ+],k∈Z(2)當(dāng)x∈[0,]時,≤2x+≤∴sin(2x+)∈[-,1]∴∴點睛:這是一道求三角函數(shù)遞增區(qū)間以及利用函數(shù)在某區(qū)間的最大值求得參數(shù)的題目,主要考查了兩角和的正弦函數(shù)公式,正弦函數(shù)的單調(diào)性,以及正弦函數(shù)的定義域和值域,解題的關(guān)鍵是熟練掌握正弦函數(shù)的性質(zhì),屬于中檔題21、(1)在R上的單調(diào)遞增,證明見解析;(2)是奇函數(shù),證明見解析;(3).【解析】(1)利用單調(diào)性的定義證明,任取,設(shè),然后判斷與0的大小,即可確定單調(diào)性.(2),直接利用函數(shù)奇偶性的定義判斷;(3)利用函數(shù)是奇函數(shù),將題設(shè)不等式轉(zhuǎn)化為,再利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論