新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題7.2等差數(shù)列及其前n項(xiàng)和(練)解析版_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題7.2等差數(shù)列及其前n項(xiàng)和(練)解析版_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題7.2等差數(shù)列及其前n項(xiàng)和(練)解析版_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題7.2等差數(shù)列及其前n項(xiàng)和(練)解析版_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)專(zhuān)題7.2等差數(shù)列及其前n項(xiàng)和(練)解析版_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專(zhuān)題7.2等差數(shù)列及其前n項(xiàng)和練基礎(chǔ)練基礎(chǔ)1.(2021·全國(guó)高三其他模擬(文))在等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,則公差SKIPIF1<0()A.1 B.2 C.-2 D.-1【答案】B【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,根據(jù)等差數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0故選:B2.(2020·湖北武漢?高三其他(文))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則公差SKIPIF1<0等于()A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:B.3.(2020·全國(guó)高三其他(理))已知SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0()A.12 B.15 C.18 D.21【答案】B【解析】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.故選:B.4.(2019·浙江高三會(huì)考)等差數(shù)列ann∈N?的公差為d,前n項(xiàng)和為Sn,若A.4B.5C.6D.7【答案】C【解析】根據(jù)題意,等差數(shù)列an中,S3=S9,則S9?S3=a4+a55.(2021·全國(guó)高三其他模擬(文))我國(guó)明代數(shù)學(xué)家程大位的《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:今有鈔二百三十八貫,令五等人從上作互和減半分之,只云戊不及甲三十三貫六百文,問(wèn):各該鈔若干?其意思是:現(xiàn)有錢(qián)238貫,采用等差數(shù)列的方法依次分給甲?乙?丙?丁?戊五個(gè)人,現(xiàn)在只知道戊所得錢(qián)比甲少33貫600文(1貫=1000文),問(wèn)各人各得錢(qián)多少?在這個(gè)問(wèn)題中,戊所得錢(qián)數(shù)為()A.30.8貫 B.39.2貫 C.47.6貫 D.64.4貫【答案】A【解析】由題意知甲?乙?丙?丁?戊五個(gè)人所得錢(qián)數(shù)組成等差數(shù)列,由等差數(shù)列項(xiàng)的性質(zhì)列方程組即可求出所要的結(jié)果.【詳解】解:依次記甲?乙?丙?丁?戊五個(gè)人所得錢(qián)數(shù)為a1,a2,a3,a4,a5,由數(shù)列{an}為等差數(shù)列,可記公差為d,依題意得:SKIPIF1<0,解得a1=64.4,d=﹣8.4,所以a5=64.4﹣33.6=30.8,即戊所得錢(qián)數(shù)為30.8貫.故選:A.6.(2020·全國(guó)高三課時(shí)練習(xí)(理))設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足S15>0,S16<0,則,,…,中最大的項(xiàng)為()A.B.C.D.【答案】D【解析】∵等差數(shù)列前n項(xiàng)和SKIPIF1<0,由S15>0,S16<0,得SKIPIF1<0,∴SKIPIF1<0,若視為函數(shù)則對(duì)稱(chēng)軸在SKIPIF1<0之間,∵SKIPIF1<0,∴Sn最大值是SKIPIF1<0,分析SKIPIF1<0,知SKIPIF1<0為正值時(shí)有最大值,故為前8項(xiàng),又d<0,SKIPIF1<0遞減,前8項(xiàng)中SKIPIF1<0遞增,∴前8項(xiàng)中SKIPIF1<0最大SKIPIF1<0最小時(shí)SKIPIF1<0有最大值,∴SKIPIF1<0最大.7.(2019·全國(guó)高考真題(文))記為等差數(shù)列的前項(xiàng)和,若,則___________.【答案】100【解析】得8.(2019·全國(guó)高考真題(理))記Sn為等差數(shù)列{an}的前n項(xiàng)和,,則___________.【答案】4.【解析】因,所以,即,所以.9.(2021·河南高三其他模擬(文))設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若S4=2S3-2,2a5-a6=7,則S8=___________.【答案】64【解析】設(shè){an}的公差為d.根據(jù)已知條件列出方程組,計(jì)算求解即可.【詳解】設(shè){an}的公差為d.因?yàn)镾KIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0.故答案為:64.10.(2018·全國(guó)高考真題(理))記Sn為等差數(shù)列{an}的前n項(xiàng)和,已知(1)求{a(2)求Sn,并求S【答案】(1)an=2n–9,(2)Sn=n2–8n,最小值為–16.【解析】(1)設(shè){an}的公差為d,由題意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通項(xiàng)公式為an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以當(dāng)n=4時(shí),Sn取得最小值,最小值為–16.練提升TIDHNEG練提升TIDHNEG1.(2021·上海市大同中學(xué)高三三模)已知數(shù)列SKIPIF1<0滿(mǎn)足SKIPIF1<0,若SKIPIF1<0,則“數(shù)列SKIPIF1<0為無(wú)窮數(shù)列”是“數(shù)列SKIPIF1<0單調(diào)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】由已知可得SKIPIF1<0,設(shè)SKIPIF1<0,若存在正整數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,此時(shí)數(shù)列SKIPIF1<0為有窮數(shù)列;若SKIPIF1<0恒不為0,由SKIPIF1<0,有SKIPIF1<0,此時(shí)SKIPIF1<0為無(wú)窮數(shù)列,由此根據(jù)充分條件、必要條件的定義進(jìn)行分析即可得結(jié)論.【詳解】解:令SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列,首項(xiàng)為SKIPIF1<0,公差為1,所以SKIPIF1<0,設(shè)SKIPIF1<0,則數(shù)列SKIPIF1<0是單調(diào)遞增的等差數(shù)列,若存在正整數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則有SKIPIF1<0,此時(shí)數(shù)列SKIPIF1<0為有窮數(shù)列;若SKIPIF1<0恒不為0,由SKIPIF1<0,有SKIPIF1<0,數(shù)列SKIPIF1<0就可以按照此遞推關(guān)系一直計(jì)算下去,所以此時(shí)SKIPIF1<0為無(wú)窮數(shù)列.(1)若SKIPIF1<0恒不為0,則SKIPIF1<0為無(wú)窮數(shù)列,由遞推關(guān)系式有SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)數(shù)列SKIPIF1<0不是單調(diào)數(shù)列;(2)當(dāng)數(shù)列SKIPIF1<0為有窮數(shù)列時(shí),存在正整數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,此時(shí)數(shù)列SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,若數(shù)列SKIPIF1<0單調(diào),則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0全為正或全為負(fù),由SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0全為正,而SKIPIF1<0,這與SKIPIF1<0單調(diào)遞增矛盾,所以當(dāng)數(shù)列SKIPIF1<0為有窮數(shù)列時(shí),數(shù)列不可能單調(diào),所以當(dāng)數(shù)列SKIPIF1<0單調(diào)時(shí),數(shù)列SKIPIF1<0一定有無(wú)窮多項(xiàng).故選:B.2.(2021·哈爾濱市第一中學(xué)校高三三模(理))習(xí)近平總書(shū)記提出:鄉(xiāng)村振興,人才是關(guān)鍵.要積極培養(yǎng)本土人才,鼓勵(lì)外出能人返鄉(xiāng)創(chuàng)業(yè).為鼓勵(lì)返鄉(xiāng)創(chuàng)業(yè),黑龍江對(duì)青山鎮(zhèn)鎮(zhèn)政府決定投入創(chuàng)業(yè)資金和開(kāi)展“創(chuàng)業(yè)技術(shù)培訓(xùn)”幫扶返鄉(xiāng)創(chuàng)業(yè)人員.預(yù)計(jì)該鎮(zhèn)政府每年投入的創(chuàng)業(yè)資金構(gòu)成一個(gè)等差數(shù)列SKIPIF1<0(單位萬(wàn)元,SKIPIF1<0),每年開(kāi)展“創(chuàng)業(yè)技術(shù)培訓(xùn)”投入的資金為第一年創(chuàng)業(yè)資金SKIPIF1<0的SKIPIF1<0倍,已知SKIPIF1<0.則預(yù)計(jì)該鎮(zhèn)政府幫扶五年累計(jì)總投入資金的最大值為()A.72萬(wàn)元 B.96萬(wàn)元 C.120萬(wàn)元 D.144萬(wàn)元【答案】C【解析】本題可設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,然后根據(jù)題意得出五年累計(jì)總投入資金為SKIPIF1<0,最后通過(guò)基本不等式即可求出最值.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,由題意可知,五年累計(jì)總投入資金為:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故預(yù)計(jì)該鎮(zhèn)政府幫扶五年累計(jì)總投入資金的最大值為120萬(wàn)元,故選:C.3.(2021·四川遂寧市·高三其他模擬(理))定義函數(shù)SKIPIF1<0,其中SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),例如:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域?yàn)镾KIPIF1<0.記集合SKIPIF1<0中元素的個(gè)數(shù)為SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】先根據(jù)條件分析出當(dāng)SKIPIF1<0時(shí),集合SKIPIF1<0中的元素個(gè)數(shù)為SKIPIF1<0,進(jìn)而可得SKIPIF1<0,再結(jié)合裂項(xiàng)相消法進(jìn)行求和可得結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在各個(gè)區(qū)間中的元素個(gè)數(shù)分別為:SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域?yàn)镾KIPIF1<0,集合SKIPIF1<0中元素個(gè)數(shù)為:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:D.4.(2021·全國(guó)高三其他模擬(理))已知等差數(shù)列SKIPIF1<0的公差SKIPIF1<0,SKIPIF1<0為其前n項(xiàng)和,則SKIPIF1<0的最小值為_(kāi)__________.【答案】8【解析】利用SKIPIF1<0,求得SKIPIF1<0的值,然后利用等差數(shù)列求和公式求得SKIPIF1<0,利用函數(shù)圖象得SKIPIF1<0的最小值可能為SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,分別求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得出最小值.【詳解】由于SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,作函數(shù)SKIPIF1<0的圖象,故SKIPIF1<0的最小值可能為SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:8.5.(2021·全國(guó)高三其他模擬(理))已知數(shù)列SKIPIF1<0…,其中在第SKIPIF1<0個(gè)1與第SKIPIF1<0個(gè)1之間插入SKIPIF1<0個(gè)SKIPIF1<0若該數(shù)列的前SKIPIF1<0項(xiàng)的和為SKIPIF1<0則SKIPIF1<0___________.【答案】3【解析】當(dāng)SKIPIF1<0時(shí),若有n個(gè)1,由題知,數(shù)列共有SKIPIF1<0項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則在第63個(gè)1后面跟第2個(gè)x就是第2018項(xiàng),所以前SKIPIF1<0項(xiàng)中含63個(gè)1,其余均為x,從而根據(jù)前SKIPIF1<0項(xiàng)的和為SKIPIF1<0求得x.【詳解】當(dāng)SKIPIF1<0時(shí),若有n個(gè)1,由題知,數(shù)列共有SKIPIF1<0項(xiàng),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則在第63個(gè)1后面跟第2個(gè)x就是第2018項(xiàng),所以前SKIPIF1<0項(xiàng)中含63個(gè)1,其余均為x,故該數(shù)列的前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,解得SKIPIF1<0.故答案為:36.(2021·廣東揭陽(yáng)市·高三其他模擬)已知正項(xiàng)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿(mǎn)足SKIPIF1<0,SKIPIF1<0,(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,兩式相減可得SKIPIF1<0,從而可求出SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求出SKIPIF1<0,進(jìn)而可出數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)由(1)可得SKIPIF1<0,從而可求出SKIPIF1<0【詳解】解:(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0相減得SKIPIF1<0即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,(SKIPIF1<0舍去)由SKIPIF1<0,得SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.7.(2021·全國(guó)高三其他模擬(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由SKIPIF1<0,根據(jù)SKIPIF1<0,求得SKIPIF1<0,得到SKIPIF1<0,進(jìn)而求得數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)由(1)得到SKIPIF1<0,利用累加法,求得SKIPIF1<0,進(jìn)而求得SKIPIF1<0,利用裂項(xiàng)法求和,即可求解.【詳解】(1)由題意,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),符合上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)知SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,所以SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿(mǎn)足上式,所以SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.8.(2021·全國(guó)高三其他模擬(理))已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0滿(mǎn)足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等差數(shù)列;(2)數(shù)列SKIPIF1<0的前項(xiàng)SKIPIF1<0和為SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)將已知遞推關(guān)系移項(xiàng)配方整理可得SKIPIF1<0,進(jìn)而利用等差中項(xiàng)法證明數(shù)列SKIPIF1<0是等差數(shù)列;(2)利用裂項(xiàng)求和法求和化簡(jiǎn)后即得證.【詳解】解:(1)由SKIPIF1<0結(jié)合數(shù)列各項(xiàng)均為正數(shù)得SKIPIF1<0則SKIPIF1<0,所以數(shù)列SKIPIF1<0是等差數(shù)列;(2)SKIPIF1<0,則公差SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.9.(2021·山東泰安市·高三其他模擬)設(shè)各項(xiàng)均為正的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)的和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由SKIPIF1<0求出SKIPIF1<0的值,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0與SKIPIF1<0的關(guān)系推導(dǎo)出數(shù)列SKIPIF1<0為等差數(shù)列,確定該數(shù)列的首項(xiàng)與公差,可求得SKIPIF1<0的通項(xiàng)公式;(2)計(jì)算出SKIPIF1<0,然后利用等差數(shù)列的求和公式可求得SKIPIF1<0.【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,由數(shù)列SKIPIF1<0的各項(xiàng)為正,可得SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列.即數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0;(2)由SKIPIF1<0得SKIPIF1<0,則有SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0,因此,SKIPIF1<0.10.(2019·浙江高三期末)在數(shù)列、中,設(shè)是數(shù)列的前項(xiàng)和,已知,,,.(Ⅰ)求和;(Ⅱ)若時(shí),恒成立,求整數(shù)的最小值.【答案】(1),(2)整數(shù)的最小值是11.【解析】(Ⅰ)因?yàn)?,即,所以是等差?shù)列,又,所以,從而.(Ⅱ)因?yàn)椋?,?dāng)時(shí),①②①-②可得,,即,而也滿(mǎn)足,故.令,則,即,因?yàn)?,,依?jù)指數(shù)增長(zhǎng)性質(zhì),整數(shù)的最小值是11.練真題TIDHNEG練真題TIDHNEG1.(2020·浙江省高考真題)我國(guó)古代數(shù)學(xué)家楊輝,朱世杰等研究過(guò)高階等差數(shù)列的求和問(wèn)題,如數(shù)列SKIPIF1<0就是二階等差數(shù)列,數(shù)列SKIPIF1<0SKIPIF1<0的前3項(xiàng)和是________.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.即SKIPIF1<0.故答案為:SKIPIF1<0.2.(2020·海南省高考真題)將數(shù)列{2n–1}與{3n–2}的公共項(xiàng)從小到大排列得到數(shù)列{an},則{an}的前n項(xiàng)和為_(kāi)_______.【答案】SKIPIF1<0【解析】因?yàn)閿?shù)列SKIPIF1<0是以1為首項(xiàng),以2為公差的等差數(shù)列,數(shù)列SKIPIF1<0是以1首項(xiàng),以3為公差的等差數(shù)列,所以這兩個(gè)數(shù)列的公共項(xiàng)所構(gòu)成的新數(shù)列SKIPIF1<0是以1為首項(xiàng),以6為公差的等差數(shù)列,所以SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,故答案為:SKIPIF1<0.3.(2019·北京高考真題(理))設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=?3,S5=?10,則a5=__________,Sn的最小值為_(kāi)_________.【答案】0.-10.【解析】等差數(shù)列中,,得,公差,,由等差數(shù)列的性質(zhì)得時(shí),,時(shí),大于0,所以的最小值為或,即為.4.(2021·全國(guó)高考真題(文))記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項(xiàng)和,已知SKIPIF1<0,且數(shù)列SKIPIF1<0是等差數(shù)列,證明:SKIPIF1<0是等差數(shù)列.【答案】證明見(jiàn)解析.【解析】先根據(jù)SKIPIF1<0求出數(shù)列SKIPIF1<0的公差SKIPIF1<0,進(jìn)一步寫(xiě)出SKIPIF1<0的通項(xiàng),從而求出SKIPIF1<0的通項(xiàng)公式,最終得證.【詳解】∵數(shù)列SKIPIF1<0是等差數(shù)列,設(shè)公差為SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿(mǎn)足SKIPIF1<0,∴SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論