版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北十堰市2023-2024學(xué)年數(shù)學(xué)高一上期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.設(shè),,若,則ab的最小值是()A.5 B.9C.16 D.252.已知冪函數(shù)的圖象過點,則的值為()A.3 B.9C.27 D.3.設(shè)集合,則A. B.C. D.4.直線與曲線有且僅有個公共點,則實數(shù)的取值范圍是A. B.C. D.5.函數(shù)的一個零點所在的區(qū)間是()A. B.C. D.6.函數(shù)的部分圖像是A. B.C. D.7.已知函數(shù)則其在區(qū)間上的大致圖象是()A. B.C. D.8.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.9.已知角的終邊過點,且,則的值為()A. B.C. D.10.如圖所示的時鐘顯示的時刻為,此時時針與分針的夾角為.若一個半徑為的扇形的圓心角為,則該扇形的面積為()A. B.C. D.11.已知,,且,則的最小值為()A.2 B.3C.4 D.812.已知函數(shù),若關(guān)于x的方程有五個不同實根,則m的值是()A.0或 B.C.0 D.不存在二、填空題(本大題共4小題,共20分)13.如圖,某化學(xué)實驗室的一個模型是一個正八面體(由兩個相同的正四棱錐組成,且各棱長都相等)若該正八面體的表面積為,則該正八面體外接球的體積為___________;若在該正八面體內(nèi)放一個球,則該球半徑的最大值為___________.14.已知向量,,,則=_____.15.中,若,則角的取值集合為_________.16.經(jīng)過原點并且與直線相切于點的圓的標準方程是__________三、解答題(本大題共6小題,共70分)17.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)圖象的對稱中心的坐標和對稱軸方程18.若向量的最大值為(1)求的值及圖像的對稱中心;(2)若不等式在上恒成立,求的取值范圍19.已知直線經(jīng)過直線與直線的交點,且與直線垂直.(1)求直線的方程;(2)若直線與圓相交于兩點,且,求的值.20.2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在武漢出現(xiàn)并很快地傳染開來(已有證據(jù)表明2019年10月、11月國外已經(jīng)存在新冠肺炎病毒),對人類生命形成巨大危害.在中共中央、國務(wù)院強有力的組織領(lǐng)導(dǎo)下,全國人民萬眾一心抗擊、防控新冠肺炎,疫情早在3月底已經(jīng)得到了非常好的控制(累計病亡人數(shù)人),然而國外因國家體制、思想觀念的不同,防控不力,新冠肺炎疫情越來越嚴重.疫情期間造成醫(yī)用防護用品短缺,某廠家生產(chǎn)醫(yī)用防護用品需投入年固定成本為萬元,每生產(chǎn)萬件,需另投入成本為.當(dāng)年產(chǎn)量不足萬件時,(萬元);當(dāng)年產(chǎn)量不小于萬件時,(萬元).通過市場分析,若每件售價為元時,該廠年內(nèi)生產(chǎn)的商品能全部售完.(利潤銷售收入總成本)(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(2)年產(chǎn)量為多少萬件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?并求出利潤的最大值21.已知的兩頂點和垂心.(1)求直線AB的方程;(2)求頂點C的坐標;(3)求BC邊的中垂線所在直線的方程.22.已知函數(shù),,(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求在區(qū)間上的最大值和最小值
參考答案一、選擇題(本大題共12小題,共60分)1、D【解析】結(jié)合基本不等式來求得的最小值.【詳解】,,,,當(dāng)且僅當(dāng)時等號成立,由.故選:D2、C【解析】求出冪函數(shù)的解析式,然后求解函數(shù)值【詳解】冪函數(shù)的圖象過點,可得,解得,冪函數(shù)的解析式為:,可得(3)故選:3、B【解析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖進行處理.4、A【解析】如圖所示,直線過點,圓的圓心坐標直線與曲線相切時,,直線與曲線有且僅有個公共點,則實數(shù)的取值范圍是考點:直線與圓相交,相切問題5、B【解析】根據(jù)零點存在性定理,計算出區(qū)間端點的函數(shù)值即可判斷;【詳解】解:因為,在上是連續(xù)函數(shù),且,即在上單調(diào)遞增,,,,所以在上存在一個零點.故選:.【點睛】本題考查函數(shù)的零點的范圍,注意運用零點存在定理,考查運算能力,屬于基礎(chǔ)題6、D【解析】根據(jù)函數(shù)的奇偶性和函數(shù)值在某個區(qū)間上的符號,對選項進行排除,由此得出正確選項.【詳解】∵是奇函數(shù),其圖像關(guān)于原點對稱,∴排除A,C項;當(dāng)時,,∴排除B項.故選D.【點睛】本小題主要考查函數(shù)圖像的識別,考查函數(shù)的單調(diào)性,屬于基礎(chǔ)題.7、D【解析】為奇函數(shù),去掉A,B;當(dāng)時,所以選D.點睛:(1)運用函數(shù)性質(zhì)研究函數(shù)圖像時,先要正確理解和把握函數(shù)相關(guān)性質(zhì)本身的含義及其應(yīng)用方向.(2)在運用函數(shù)性質(zhì)特別是奇偶性、周期、對稱性、單調(diào)性、最值、零點時,要注意用好其與條件的相互關(guān)系,結(jié)合特征進行等價轉(zhuǎn)化研究.如奇偶性可實現(xiàn)自變量正負轉(zhuǎn)化,周期可實現(xiàn)自變量大小轉(zhuǎn)化,單調(diào)性可實現(xiàn)去,即將函數(shù)值的大小轉(zhuǎn)化自變量大小關(guān)系8、B【解析】因為cos=-,即cos=-,所以sin=-,則sin+cosA=sinAcos+cosAsin+cosA=sin=-.故選B.9、B【解析】因為角的終邊過點,所以,,解得,故選B.10、C【解析】求出的值,利用扇形的面積公式可求得扇形的面積.【詳解】由圖可知,,所以該扇形的面積故選:C.11、C【解析】根據(jù)條件,變形后,利用均值不等式求最值.【詳解】因為,所以.因為,,所以,當(dāng)且僅當(dāng),時,等號成立,故的最小值為4.故選:C12、C【解析】令,做出的圖像,根據(jù)圖像確定至多存在兩個的值,使得與有五個交點時,的值或取值范圍,進而轉(zhuǎn)為求方程在的值或取值范圍有解,利用一元二次方程根的分布,即可求解.【詳解】做出圖像如下圖所示:令,方程,為,當(dāng)時,方程沒有實數(shù)解,當(dāng)或時,方程有2個實數(shù)解,當(dāng),方程有4個實數(shù)解,當(dāng)時,方程有3個解,要使方程方程有五個實根,則方程有一根為1,另一根為0或大于1,當(dāng)時,有或,當(dāng)時,,或,滿足題意,當(dāng)時,,或,不合題意,所以.故選:C.【點睛】本題考查復(fù)合方程的解,換元法是解題的關(guān)鍵,數(shù)形結(jié)合是解題的依賴,或直接用選項中的值代入驗證,屬于較難題.二、填空題(本大題共4小題,共20分)13、①.②.【解析】由已知求得正八面體的棱長為,進而求得,即知外接球的半徑,進而求得體積;若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離,證得平面,再利用相似可知,即可求得半徑.【詳解】如圖,記該八面體為,O為正方形的中心,則平面設(shè),則,解得.在正方形中,,則在直角中,知,即正八面體外接球的半徑為故該正八面體外接球的體積為.若球O在正八面體內(nèi),則球O半徑的最大值為O到平面的距離.取的中點E,連接,,則,又,,平面過O作于H,又,,所以平面,又,,則,則該球半徑的最大值為.故答案為:,14、【解析】先根據(jù)向量的減法運算求得,再根據(jù)向量垂直的坐標表示,可得關(guān)于的方程,解方程即可求得的值.【詳解】因為向量,,所以則即解得故答案為:【點睛】本題考查了向量垂直的坐標關(guān)系,屬于基礎(chǔ)題.15、【解析】△ABC中,由tanA=1,求得A的值【詳解】∵△ABC中,tanA=1>0,故∴A=故答案為【點睛】本題主要考查三角函數(shù)的化簡,及與三角形的綜合,應(yīng)注意三角形內(nèi)角的范圍16、【解析】設(shè)圓心坐標,則,,,根據(jù)這三個方程組可以計算得:,所以所求方程為:點睛:設(shè)出圓心與半徑,根據(jù)題意列出方程組,解出圓心和半徑即可三、解答題(本大題共6小題,共70分)17、(1)增區(qū)間為,減區(qū)間為(2)對稱中心的坐標為;對稱軸方程為【解析】(1)將函數(shù)轉(zhuǎn)化為,利用正弦函數(shù)的單調(diào)性求解;(2)利用正弦函數(shù)的對稱性求解;【小問1詳解】解:由.令,解得,令,解得,故函數(shù)的增區(qū)間為,減區(qū)間為;【小問2詳解】令,解得,可得函數(shù)圖象的對稱中心的坐標為,令,解得,可得函數(shù)圖象的對稱軸方程為18、(1)(2)【解析】(1)先利用向量的數(shù)量積公式和倍角公式對函數(shù)式進行化簡,再利用兩倍角公式以及兩角差的正弦公式進行整理,然后根據(jù)最大值為解出的值,最后根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的對稱中心;(2)首先通過的取值范圍來確定函數(shù)的范圍,再根據(jù)不等式在上恒成立,推斷出,最后計算得出結(jié)果【詳解】因為的最大值為,所以,由得所以的對稱中心為;(2)因為,所以即,因為不等式在上恒成立,所以即解得,的取值范圍為【點睛】本題考查了向量的相關(guān)性質(zhì)以及三角函數(shù)相關(guān)性質(zhì),主要考查了向量的乘法、三角函數(shù)的對稱性、三角恒等變換、三角函數(shù)的值域等,屬于中檔題.的對稱中心為19、(1);(2)或.【解析】(1)由解得P的坐標,再求出直線斜率,即可求直線的方程;(2)若直線與圓:相交由垂徑定理列方程求解即可.【詳解】(1)由得所以.因為,所以,所以直線的方程為,即.(2)由已知可得:圓心到直線的距離為,因為,所以,所以,所以或.【點睛】直線與圓的位置關(guān)系常用處理方法:(1)直線與圓相切處理時要利用圓心與切點連線垂直,構(gòu)建直角三角形,進而利用勾股定理可以建立等量關(guān)系;(2)直線與圓相交,利用垂徑定理也可以構(gòu)建直角三角形;(3)直線與圓相離時,當(dāng)過圓心作直線垂線時長度最小20、(1);(2)年產(chǎn)量為萬件時,該廠在這一商品的生產(chǎn)中所獲利潤最大,利潤的最大值為萬元【解析】(1)由利潤銷售收入總成本寫出分段函數(shù)的解析式即可;(2)利用配方法和基本不等式分別求出各段的最大值,再取兩個中最大的即可.【詳解】(1)當(dāng),時,當(dāng),時,(2)當(dāng),時,,當(dāng)時,取得最大值(萬元)當(dāng),時,當(dāng)且僅當(dāng),即時等號成立即時,取得最大值萬元綜上,所以即生產(chǎn)量為萬件時,該廠在這一商品的生產(chǎn)中所獲利潤最大為萬元21、(1);(2);(3).【解析】(1)由兩點間的斜率公式求出,再代入其中一點,由點斜式求出直線的方程(也可直接代兩點式求解);(2)由題可知,,借助斜率公式,進而可分別求出直線與直線的方程,再聯(lián)立方程,即可求得點的坐標;(3)由中垂線性質(zhì)知,邊的中垂線的斜率等于,再由(2)可求得邊的中點坐標,進而可求解.【詳解】(1)由題意,直線的方程為:即:.(2)由題作示意圖如下:,直線的方程為:,即:——①又,直線與軸垂直,直線的方程為:——②聯(lián)立①②,解得,故頂點的坐標為(3)由題意及(2)可知,邊的中垂線的斜率等于,邊的中點為,故邊的中垂線的方程為:【點睛】本題考查直線方程與交點坐標的求法,以及垂心的性質(zhì),考查能力辨析能力及運算求解能力,屬于中檔
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《汽車結(jié)構(gòu)認識》課件
- 單位管理制度合并選集【職員管理】十篇
- 單位管理制度范例選集職工管理十篇
- 單位管理制度呈現(xiàn)合集職工管理十篇
- 單位管理制度呈現(xiàn)大合集員工管理
- 《店鋪運營管理》課件
- 《生藥分析1》課程實施大綱
- 某科技園物業(yè)管理方案
- 2024年供電公司安全稽查總結(jié)
- 《小升初語法名詞》課件
- 《皮膚病中成藥導(dǎo)引》課件
- 2024-2030年中國除顫儀行業(yè)市場分析報告
- 眼鏡學(xué)智慧樹知到答案2024年溫州醫(yī)科大學(xué)
- 安利培訓(xùn)體系介紹
- 推薦-挖掘機檢驗報告精品
- 排洪溝工程設(shè)計說明
- 23、PFMEA檢查表
- CSX購倂Conrail之后能夠產(chǎn)生的綜效(synergy)列示
- 煤礦機電事故影響考核管理辦法
- 三段式電流保護課程設(shè)計
- 施工電梯基礎(chǔ)(地下室頂板加固圖文并茂)施工方案
評論
0/150
提交評論