版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省肥東縣圣泉中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.函數(shù)的定義域是()A. B.C. D.(0,4)2.已知函數(shù)為R上的偶函數(shù),若對于時,都有,且當時,,則等于()A.1 B.-1C. D.3.已知,,,則a,b,c的大小關(guān)系為()A. B.C. D.4.在平面直角坐標系中,以為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,則的最小值為A. B.C. D.5.是邊AB上的中點,記,,則向量A. B.C. D.6.集合,,則P∩M等于A. B.C. D.7.下列直線中,傾斜角為45°的是()A. B.C. D.8.在平面直角坐標系中,角以為始邊,終邊與單位圓交于點,則()A. B.C. D.9.下列哪組中的兩個函數(shù)是同一函數(shù)()A與 B.與C.與 D.與10.函數(shù)的單調(diào)遞減區(qū)間是A. B.C. D.11.“”是“函數(shù)為偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.四棱柱中,,,則與所成角為A. B.C. D.二、填空題(本大題共4小題,共20分)13.設(shè),則________14.已知,,向量與的夾角為,則________15.若,,,則的最小值為______.16.設(shè),若存在使得關(guān)于x的方程恰有六個解,則b的取值范圍是______三、解答題(本大題共6小題,共70分)17.如圖,已知是半徑為圓心角為的扇形,是該扇形弧上的動點,是扇形的內(nèi)接矩形,記為.(1)若的周長為,求的值;(2)求的最大值,并求此時的值.18.設(shè)函數(shù)且是奇函數(shù)求常數(shù)k值;若,試判斷函數(shù)的單調(diào)性,并加以證明;若已知,且函數(shù)在區(qū)間上的最小值為,求實數(shù)m的值19.已知函數(shù).(1)求的定義域;(2)討論的單調(diào)性;(3)求在區(qū)間[,2]上的值域.20.已知圓的方程為,是坐標原點.直線與圓交于兩點(1)求的取值范圍;(2)過點作圓的切線,求切線所在直線的方程.21.已知關(guān)于的函數(shù).(1)若,求在上的值域;(2)存在唯一的實數(shù),使得函數(shù)關(guān)于點對稱,求的取值范圍.22.如圖,已知三棱錐中,,,為的中點,為的中點,且為正三角形.(1)求證:平面;(2)求證:平面;(3)若,,求三棱錐的體積.
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性,結(jié)合二次根式的性質(zhì)進行求解即可.【詳解】由,故選:C2、A【解析】由已知確定函數(shù)的遞推式,利用遞推式與奇偶性計算即可【詳解】當時,,則,所以當時,,所以又是偶函數(shù),,所以故選:A3、D【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性求解.【詳解】因為,,,所以,故選:D4、D【解析】因為為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,設(shè)切點為,所以,設(shè),則,,故選D.考點:1、圓的幾何性質(zhì);2、數(shù)形結(jié)合思想及三角函數(shù)求最值【方法點睛】本題主要考查圓的幾何性質(zhì)、數(shù)形結(jié)合思想及三角函數(shù)求最值,屬于難題.求最值的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關(guān)鍵在于正確化成完全平方式,并且一定要先確定其定義域;②三角函數(shù)法:將問題轉(zhuǎn)化為三角函數(shù),利用三角函數(shù)的有界性求最值;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調(diào)性法:首先確定函數(shù)的定義域,然后準確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求凼數(shù)的值域,⑤圖像法:畫出函數(shù)圖像,根據(jù)圖像的最高和最低點求最值,本題主要應(yīng)用方法②求的最小值的5、C【解析】由題意得,∴.選C6、C【解析】先求出集合M和集合P,根據(jù)交集的定義,即得?!驹斀狻坑深}得,,則.故選:C【點睛】求兩個集合的交集并不難,要注意集合P是整數(shù)集。7、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線的傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C8、A【解析】根據(jù)任意角三角函數(shù)的概念可得出,然后利用誘導(dǎo)公式求解.【詳解】因為角以為始邊,且終邊與單位圓交于點,所以,則.故選:A.【點睛】當以為始邊,已知角終邊上一點的坐標為時,則,.9、D【解析】根據(jù)同一函數(shù)的概念,逐項判斷,即可得出結(jié)果.【詳解】A選項,的定義域為,的定義域為,定義域不同,故A錯;B選項,定義域為,的定義域為,定義域不同,故B錯;C選項,的定義域為,的定義域為,定義域不同,故C錯;D選項,與的定義域都為,且,對應(yīng)關(guān)系一致,故D正確.故選:D.10、A【解析】令,則有或,在上的減區(qū)間為,故在上的減區(qū)間為,選A11、A【解析】根據(jù)充分必要條件的定義判斷【詳解】時,是偶函數(shù),充分性滿足,但時,也是偶函數(shù),必要性不滿足應(yīng)是充分不必要條件故選:A12、D【解析】四棱柱中,因為,所以,所以是所成角,設(shè),則,+=,所以,所以+=,所以,所以選擇D二、填空題(本大題共4小題,共20分)13、【解析】根據(jù)自變量取值判斷使用哪一段解析式求解,分別代入求解即可【詳解】解:因為,所以,所以故答案為:114、1【解析】由于.考點:平面向量數(shù)量積;15、【解析】利用基本不等式求出即可.【詳解】解:若,,則,當且僅當時,取等號則的最小值為.故答案為:.【點睛】本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.16、【解析】作出f(x)的圖像,當時,,當時,.令,則,則該關(guān)于t的方程有兩個解、,設(shè)<,則,.令,則,據(jù)此求出a的范圍,從而求出b的范圍【詳解】當時,,當時,,當時,,則f(x)圖像如圖所示:當時,,當時,令,則,∵關(guān)于x的方程恰有六個解,∴關(guān)于t的方程有兩個解、,設(shè)<,則,,令,則,∴且,要存a滿足條件,則,解得故答案為:三、解答題(本大題共6小題,共70分)17、(1);(2),.【解析】(1)根據(jù)周長即可求得,以及;將目標式進行轉(zhuǎn)化即可求得;(2)用表示出,將其轉(zhuǎn)化為關(guān)于的三角函數(shù),求該三角函數(shù)的最大值即可求得結(jié)果.【詳解】(1),,則若的周長為,則,,平方得,即,解得(舍)或.則.(2)中,,,在中,,,則因為,,當,即時,有最大值.【點睛】本題考查已知正切值求齊次式的值,以及幾何圖形中構(gòu)造三角函數(shù),并求三角函數(shù)最值的問題,涉及倍角公式和輔助角公式的利用,屬綜合中檔題.18、(1);(2)在上為單調(diào)增函數(shù);(3)【解析】(1)根據(jù)奇函數(shù)的定義,恒成立,可得值,也可用奇函數(shù)的必要條件求出值,然后用奇函數(shù)定義檢驗;(2)判斷單調(diào)性,一般由單調(diào)性定義,設(shè),判斷的正負(因式分解后判別),可得結(jié)論;(3)首先由,得,這樣就有,這種函數(shù)的最值求法是用換元法,即設(shè),把函數(shù)轉(zhuǎn)化為二次函數(shù)的問題,注意在換元過程中“新元”的取值范圍試題解析:(1)函數(shù)的定義域為函數(shù)(且)是奇函數(shù),,經(jīng)檢驗可知,函數(shù)為奇函數(shù),符合題意(2)設(shè)、為上兩任意實數(shù),且,,,,即函數(shù)在上為單調(diào)增函數(shù).(3),,解得或且,()令(),則當時,,解得,舍去當時,,解得考點:函數(shù)的奇偶性、單調(diào)性,函數(shù)的最值19、(1)(2)函數(shù)在上為減函數(shù)(3)【解析】(1)直接令真數(shù)大于0即可得解;(2)由和,結(jié)合同增異減即可得解;(3)直接利用(2)的單調(diào)性可直接得值域.【小問1詳解】由,得,解得.所以定義域為;小問2詳解】由在上為增函數(shù),且為減函數(shù),所以在上為減函數(shù);【小問3詳解】由(2)知函數(shù)單調(diào)遞減,因為,,所以在區(qū)間上的值域為.20、(1);(2)或【解析】(1)直線與圓交于兩點,即直線與圓相交,轉(zhuǎn)化成圓心到直線距離小于半徑,利用公式解不等式;(2)過某點求圓的切線,分斜率存在和斜率不存在兩種情況數(shù)形結(jié)合分別討論.【詳解】(1)圓心到直線的距離,解得或即k的取值范圍為.(2)當過點P的直線斜率不存在時,即x=2與圓相切,符合題意.當過點P的直線斜率存在時,設(shè)其方程為即,由圓心(0,4)到直線的距離等于2,可得解得,故直線方程為綜上所述,圓的切線方程為或【點睛】此題考查直線和圓的位置關(guān)系,結(jié)合圓的幾何性質(zhì)處理相交相切,過某點的直線在設(shè)其方程的時候一定注意討論斜率是否存在,這是一個易錯點,對邏輯思維能力要求較高,當然也可以考慮直線與二次曲線的常規(guī)解法.21、(1)(2)【解析】(1)由,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解;(2)因為,可得,結(jié)合題意列出不等式,即可求解.【小問1詳解】解:當,可得函數(shù),因為,可得,則,所以在上值域為.【小問2詳解】解:因為,可得,因為存在唯一的實數(shù),使得曲線關(guān)于點對稱,所以,解得,所以的取值范圍即.22、(1)見詳解;(2)見詳解;(3).【解析】(1)先證,可證平面.(2)先證,得,結(jié)合可證得平面.(3)等積轉(zhuǎn)換,由,可求得體積.【詳解】(1)證明:因為為的中點,為的中點,所以是的中位線,.又,,所以.(2)證明:因為為正三角形,為的中點,所以.又,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州城市職業(yè)學(xué)院《房地產(chǎn)策劃與運營》2023-2024學(xué)年第一學(xué)期期末試卷
- 淫羊藿培育項目可行性研究報告-淫羊藿市場需求持續(xù)增大
- 貴陽人文科技學(xué)院《聚合物改性原理及方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《英語教師核心素養(yǎng)解讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025山東省安全員-B證考試題庫附答案
- 2025年云南省安全員《A證》考試題庫及答案
- 廣州應(yīng)用科技學(xué)院《建筑給排水與消防》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州現(xiàn)代信息工程職業(yè)技術(shù)學(xué)院《增材制造技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025黑龍江省建筑安全員C證(專職安全員)考試題庫
- 2025年河南省建筑安全員-C證(專職安全員)考試題庫
- 【3套試卷】人教版八年級數(shù)學(xué)上冊期末考試試題【答案】
- 單詞連連看答題闖關(guān)游戲課堂互動課件1
- 陜西省西安市英語中考試卷與參考答案(2025年)
- 中山市2023-2024八年級上學(xué)期期末考試數(shù)學(xué)試卷
- 2024年廣州市南沙區(qū)初中語文畢業(yè)班模擬考試卷(附答案解析)
- 物業(yè)服務(wù)考核辦法及評分細則(表格模板)
- 2024年春九年級化學(xué)下冊 第九單元 溶液教案 (新版)新人教版
- 臨高后水灣開放式海洋養(yǎng)殖項目可行性研究報告
- DL-T 1071-2023 電力大件運輸規(guī)范
- GB/T 44143-2024科技人才評價規(guī)范
- 流感防治技術(shù)方案
評論
0/150
提交評論