新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與題型精練專題08 函數(shù)與方程及常見的函數(shù)模型(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與題型精練專題08 函數(shù)與方程及常見的函數(shù)模型(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與題型精練專題08 函數(shù)與方程及常見的函數(shù)模型(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與題型精練專題08 函數(shù)與方程及常見的函數(shù)模型(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)點(diǎn)總結(jié)與題型精練專題08 函數(shù)與方程及常見的函數(shù)模型(含解析)_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題08函數(shù)與方程及常見的函數(shù)模型【考綱要求】1、結(jié)合二次函數(shù)的圖象,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷一元二次方程根的存在性與根的個(gè)數(shù).2、根據(jù)具體函數(shù)的圖象,能夠用二分法求相應(yīng)方程的近似解.3、了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)的增長特征,指數(shù)增長、對(duì)數(shù)增長等不同函數(shù)類型增長的含義.4、了解函數(shù)模型(如指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的應(yīng)用.【思維導(dǎo)圖】【考點(diǎn)總結(jié)】一、函數(shù)與方程1.函數(shù)的零點(diǎn)(1)函數(shù)零點(diǎn)的定義:對(duì)于函數(shù)y=f(x),把使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn).(2)三個(gè)等價(jià)關(guān)系:方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn).2.函數(shù)零點(diǎn)的判定如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是f(x)=0的根.我們把這一結(jié)論稱為函數(shù)零點(diǎn)存在性定理.3.二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系Δ>0Δ=0Δ<0二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的交點(diǎn)(x1,0),(x2,0)(x1,0)無交點(diǎn)零點(diǎn)個(gè)數(shù)兩個(gè)一個(gè)零個(gè)【常用結(jié)論】有關(guān)函數(shù)零點(diǎn)的三個(gè)結(jié)論(1)若連續(xù)不斷的函數(shù)f(x)在定義域上是單調(diào)函數(shù),則f(x)至多有一個(gè)零點(diǎn).(2)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào).(3)連續(xù)不斷的函數(shù)圖象通過零點(diǎn)時(shí),函數(shù)值可能變號(hào),也可能不變號(hào).二、函數(shù)模型及其應(yīng)用1.幾種常見的函數(shù)模型函數(shù)模型函數(shù)解析式一次函數(shù)模型f(x)=ax+b(a,b為常數(shù),a≠0)二次函數(shù)模型f(x)=ax2+bx+c(a,b,c為常數(shù),a≠0)指數(shù)函數(shù)模型f(x)=bax+c(a,b,c為常數(shù),a>0且a≠1,b≠0)對(duì)數(shù)函數(shù)模型f(x)=blogax+c(a,b,c為常數(shù),a>0且a≠1,b≠0)冪函數(shù)模型f(x)=axn+b(a,b,n為常數(shù),a≠0,n≠0)2.三種函數(shù)模型性質(zhì)比較y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的單調(diào)性增函數(shù)增函數(shù)增函數(shù)增長速度越來越快越來越慢相對(duì)平穩(wěn)圖象的變化隨x值增大,圖象與y軸接近平行隨x值增大,圖象與x軸接近平行隨n值變化而不同【常用結(jié)論】1.“對(duì)勾”函數(shù)形如f(x)=x+eq\f(a,x)(a>0)的函數(shù)模型稱為“對(duì)勾”函數(shù)模型:(1)該函數(shù)在(-∞,-eq\r(a))和(eq\r(a),+∞)上單調(diào)遞增,在[-eq\r(a),0)和(0,eq\r(a)]上單調(diào)遞減.(2)當(dāng)x>0時(shí),x=eq\r(a)時(shí)取最小值2eq\r(a),當(dāng)x<0時(shí),x=-eq\r(a)時(shí)取最大值-2eq\r(a).2.解決函數(shù)應(yīng)用問題應(yīng)注意的3個(gè)易誤點(diǎn)(1)解應(yīng)用題的關(guān)鍵是審題,不僅要明白、理解問題講的是什么,還要特別注意一些關(guān)鍵的字眼(如“幾年后”與“第幾年”),學(xué)生常常由于讀題不謹(jǐn)慎而漏讀和錯(cuò)讀,導(dǎo)致題目不會(huì)做或函數(shù)解析式寫錯(cuò).(2)解應(yīng)用題建模后一定要注意定義域.(3)解決完數(shù)學(xué)模型后,注意轉(zhuǎn)化為實(shí)際問題寫出總結(jié)答案.【題型匯編】題型一:函數(shù)與方程題型二:常見的函數(shù)模型:一次與二次型題型三:常見的函數(shù)模型:冪指對(duì)型題型四:常見的函數(shù)模型應(yīng)用實(shí)例【題型講解】題型一:函數(shù)與方程一、單選題1.(2022·北京市大興區(qū)興華中學(xué)三模)已知SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】由SKIPIF1<0得出SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)零點(diǎn),再由SKIPIF1<0有兩個(gè)不同的零點(diǎn),得出a的取值范圍.【詳解】SKIPIF1<0,則SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)由SKIPIF1<0,解得SKIPIF1<0要使得SKIPIF1<0有兩個(gè)不同的零點(diǎn),則SKIPIF1<0故選:A2.(2022·山東煙臺(tái)·三模)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有且僅有三個(gè)實(shí)數(shù)解,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】作出函數(shù)SKIPIF1<0的圖象,利用導(dǎo)數(shù)的幾何意義求出對(duì)應(yīng)的切線方程以及斜率,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】解:作出函數(shù)SKIPIF1<0的圖象如圖:依題意方程SKIPIF1<0有且僅有三個(gè)實(shí)數(shù)解,即SKIPIF1<0與SKIPIF1<0有且僅有三個(gè)交點(diǎn),因?yàn)镾KIPIF1<0必過SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0時(shí),方程SKIPIF1<0不可能有三個(gè)實(shí)數(shù)解,則必有SKIPIF1<0,當(dāng)直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0時(shí)相切時(shí),設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則切線方程為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0切線方程為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有且僅有一個(gè)交點(diǎn),要使方程SKIPIF1<0有且僅有三個(gè)的實(shí)數(shù)解,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0與SKIPIF1<0有兩個(gè)交點(diǎn),設(shè)直線SKIPIF1<0與SKIPIF1<0切于點(diǎn)SKIPIF1<0,此時(shí)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:B3.(2022·北京·首都師范大學(xué)附屬中學(xué)三模)已知函數(shù)SKIPIF1<0,給出下列四個(gè)結(jié)論:①若SKIPIF1<0,則SKIPIF1<0有一個(gè)零點(diǎn);②若SKIPIF1<0,則SKIPIF1<0有三個(gè)零點(diǎn);③SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0上是增函數(shù);④SKIPIF1<0在SKIPIF1<0上是增函數(shù).其中所有正確結(jié)論的序號(hào)是(

)A.①②③ B.①③④ C.①②④ D.②③④【答案】C【解析】【分析】利用導(dǎo)數(shù)分段研究函數(shù)SKIPIF1<0的單調(diào)遞增,結(jié)合零點(diǎn)的存在性定理依次判斷命題即可.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,所以函數(shù)SKIPIF1<0,對(duì)于①,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0在R上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0有一個(gè)零點(diǎn),故①正確;對(duì)于②,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,如圖,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有2個(gè)零點(diǎn),綜上,當(dāng)SKIPIF1<0時(shí)函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),故②正確;對(duì)于③,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),所以SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),所以SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以不存在SKIPIF1<0,使得SKIPIF1<0在R上是增函數(shù),故③錯(cuò)誤;對(duì)于④,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0在R上單調(diào)遞增,結(jié)合命題①的分析可知當(dāng)SKIPIF1<0時(shí)函數(shù)SKIPIF1<0在R上單調(diào)遞增,綜上,SKIPIF1<0,SKIPIF1<0在R上是增函數(shù),故④正確;故選:C.4.(2022·北京工業(yè)大學(xué)附屬中學(xué)三模)已知實(shí)數(shù)SKIPIF1<0是方程SKIPIF1<0的一個(gè)解,SKIPIF1<0是方程SKIPIF1<0的一個(gè)解,則SKIPIF1<0可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】依題意可得SKIPIF1<0、SKIPIF1<0,即可得到SKIPIF1<0,從而得解;【詳解】解:依題意SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0;故選:B5.(2022·天津市寶坻區(qū)第一中學(xué)二模)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有m個(gè)零點(diǎn),函數(shù)SKIPIF1<0有n個(gè)零點(diǎn),且SKIPIF1<0,則非零實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】作出SKIPIF1<0的函數(shù)圖像,利用圖像列出關(guān)于SKIPIF1<0的不等式,解出SKIPIF1<0的范圍即可【詳解】SKIPIF1<0與SKIPIF1<0與SKIPIF1<0共交7個(gè)點(diǎn)SKIPIF1<0圖象如下:所以:(Ⅰ)SKIPIF1<0,解得SKIPIF1<0(Ⅱ)SKIPIF1<0,解得SKIPIF1<0綜上:SKIPIF1<0.故選:C6.(2022·天津市濱海新區(qū)塘沽第一中學(xué)三模)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個(gè)交點(diǎn),則SKIPIF1<0的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】根據(jù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合正弦函數(shù)的單調(diào)性可得SKIPIF1<0,從而可求得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增這個(gè)條件SKIPIF1<0的范圍,再根據(jù)函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個(gè)交點(diǎn),則在SKIPIF1<0上函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個(gè)交點(diǎn),即方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,從而可得第二個(gè)條件下的SKIPIF1<0的范圍,取交集即可得出答案,注意說明SKIPIF1<0時(shí),函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個(gè)交點(diǎn).【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0,若在SKIPIF1<0上函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個(gè)交點(diǎn),即方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,即方程SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)數(shù)根,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,結(jié)合圖象可得SKIPIF1<0時(shí),函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個(gè)交點(diǎn),綜上所述,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有三個(gè)交點(diǎn),滿足題意,故選:B.7.(2022·新疆克拉瑪依·三模(理))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的所有零點(diǎn)之和為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】把方程SKIPIF1<0變形,把零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為正弦函數(shù)圖象與另一函數(shù)SKIPIF1<0圖象的交點(diǎn)個(gè)數(shù),根據(jù)函數(shù)的對(duì)稱性計(jì)算可得.【詳解】解:因?yàn)镾KIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)顯然不成立,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,作出SKIPIF1<0和SKIPIF1<0的圖象,如圖,它們關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,由圖象可知它們在SKIPIF1<0上有4個(gè)交點(diǎn),且關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,每對(duì)稱的兩個(gè)點(diǎn)的橫坐標(biāo)和為SKIPIF1<0,所以4個(gè)點(diǎn)的橫坐標(biāo)之和為SKIPIF1<0.故選:C.8.(2022·廣西·貴港市高級(jí)中學(xué)三模(理))已知SKIPIF1<0在SKIPIF1<0有且僅有6個(gè)實(shí)數(shù)根,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先化簡SKIPIF1<0為SKIPIF1<0,再根據(jù)題意得出SKIPIF1<0,求解即可.【詳解】解:由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0有且僅有6個(gè)實(shí)數(shù)根,因?yàn)镾KIPIF1<0,故只需SKIPIF1<0,解得SKIPIF1<0,故選:D.9.(2022·海南省直轄縣級(jí)單位·三模)設(shè)函數(shù)SKIPIF1<0定義域?yàn)镽,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0有(

)個(gè)零點(diǎn)A.4 B.5 C.6 D.7【答案】C【解析】【分析】根據(jù)題意可得SKIPIF1<0的對(duì)稱性,再畫出SKIPIF1<0的圖象,再數(shù)形結(jié)合判斷SKIPIF1<0的圖象交點(diǎn)個(gè)數(shù)即可【詳解】SKIPIF1<0的零點(diǎn)個(gè)數(shù)即SKIPIF1<0的圖象交點(diǎn)個(gè)數(shù).因?yàn)镾KIPIF1<0為奇函數(shù),故SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,故SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,又SKIPIF1<0為偶函數(shù),故SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,畫出圖象,易得函數(shù)SKIPIF1<0的圖象有6個(gè)交點(diǎn)故選:C10.(2022·江西·二模(文))已知SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】設(shè)SKIPIF1<0,可知SKIPIF1<0,求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得出SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0在SKIPIF1<0上的值域,即為所求.【詳解】設(shè)SKIPIF1<0,作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示:由圖象可知,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0和SKIPIF1<0的圖象有三個(gè)交點(diǎn),且SKIPIF1<0,由已知可得SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0減極小值增所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,因此,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解本題的關(guān)鍵在于通過設(shè)SKIPIF1<0,將SKIPIF1<0、SKIPIF1<0、SKIPIF1<0用含SKIPIF1<0的代數(shù)式加以表示,再將所求代數(shù)式的取值范圍轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)值域問題,結(jié)合導(dǎo)數(shù)法求解.二、多選題1.(2022·湖南師大附中三模)已知函數(shù)SKIPIF1<0對(duì)定義域內(nèi)任意x,都有SKIPIF1<0,若函數(shù)SKIPIF1<0在[0,+∞)上的零點(diǎn)從小到大恰好構(gòu)成一個(gè)等差數(shù)列,則k的可能取值為(

)A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【解析】【分析】結(jié)合SKIPIF1<0周期性和函數(shù)SKIPIF1<0在SKIPIF1<0的解析式畫出SKIPIF1<0的圖象,將SKIPIF1<0的零點(diǎn)轉(zhuǎn)化為函數(shù)圖象交點(diǎn)問題,分情況討論SKIPIF1<0的零點(diǎn)即可.【詳解】由已知,SKIPIF1<0,則SKIPIF1<0的周期為2.其大數(shù)圖象如圖所示,由圖可知,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0零點(diǎn)為1、3、5、7、…,滿足題意;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0零點(diǎn)為0、2、4、6、…,滿足題意;③當(dāng)SKIPIF1<0時(shí),若零點(diǎn)從小到大構(gòu)成等差數(shù)列SKIPIF1<0,公差只能為1.由SKIPIF1<0,得SKIPIF1<0,此時(shí)SKIPIF1<0;④當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0無零點(diǎn),不符合題意.故選:ABD.2.(2022·遼寧·撫順市第二中學(xué)三模)已知函數(shù)SKIPIF1<0,下列選項(xiàng)正確的是(

)A.點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0的零點(diǎn)B.SKIPIF1<0,使SKIPIF1<0C.函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0D.若關(guān)于x的方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是SKIPIF1<0【答案】CD【解析】【分析】根據(jù)零點(diǎn)的定義即可判斷A;利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0的單調(diào)區(qū)間,從而可求得函數(shù)的值域,即可判斷C;根據(jù)函數(shù)的單調(diào)性分別求出函數(shù)在SKIPIF1<0和SKIPIF1<0的最值,即可判斷B;方程SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,結(jié)合C選項(xiàng),方程SKIPIF1<0實(shí)數(shù)根的個(gè)數(shù),即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象交點(diǎn)的個(gè)數(shù),結(jié)合函數(shù)圖象即可求出SKIPIF1<0的范圍,即可判斷D.【詳解】解:對(duì)于A,因?yàn)镾KIPIF1<0,所以SKIPIF1<0是函數(shù)SKIPIF1<0的零點(diǎn),故A錯(cuò)誤;對(duì)于C,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,故SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上所述,函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故C正確;對(duì)于B,由C可知,函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞增,則SKIPIF1<0,所以不存在SKIPIF1<0,使SKIPIF1<0,故B錯(cuò)誤;對(duì)于D,關(guān)于x的方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,即關(guān)于x的方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,所以SKIPIF1<0或SKIPIF1<0,由C知,方程SKIPIF1<0只有一個(gè)實(shí)數(shù)根,所以方程SKIPIF1<0也只有一個(gè)實(shí)數(shù)根,即函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象只有一個(gè)交點(diǎn),如圖,畫出函數(shù)SKIPIF1<0的簡圖,則SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)a的取值范圍是SKIPIF1<0,故D正確.故選:CD.【點(diǎn)睛】本題考查了零點(diǎn)的定義,考查了利用到處求函數(shù)的單調(diào)區(qū)間及函數(shù)的值域,考查了利用導(dǎo)數(shù)解決方程實(shí)數(shù)根的個(gè)數(shù)的問題,考查了轉(zhuǎn)化思想及數(shù)形結(jié)合思想.題型二:常見的函數(shù)模型:一次與二次型一、單選題1.(2022·甘肅酒泉·模擬預(yù)測(文))如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0沿著邊SKIPIF1<0、SKIPIF1<0與SKIPIF1<0運(yùn)動(dòng),記SKIPIF1<0,將SKIPIF1<0的面積表示為關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】C【解析】【分析】分SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三種情況討論,求出SKIPIF1<0的邊SKIPIF1<0上的高,結(jié)合三角形的面積公式可得出SKIPIF1<0的表達(dá)式.【詳解】SKIPIF1<0,則SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上(不包括點(diǎn)SKIPIF1<0),則SKIPIF1<0,此時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上(不包括點(diǎn)SKIPIF1<0),此時(shí)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上(不包括點(diǎn)SKIPIF1<0),此時(shí)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故選:C.2.(2022·黑龍江·哈爾濱三中三模(理))如圖為某小區(qū)七人足球場的平面示意圖,SKIPIF1<0為球門,在某次小區(qū)居民友誼比賽中,隊(duì)員甲在中線上距離邊線SKIPIF1<0米的SKIPIF1<0點(diǎn)處接球,此時(shí)SKIPIF1<0,假設(shè)甲沿著平行邊線的方向向前帶球,并準(zhǔn)備在點(diǎn)SKIPIF1<0處射門,為獲得最佳的射門角度(即SKIPIF1<0最大),則射門時(shí)甲離上方端線的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】先根據(jù)題意解出SKIPIF1<0長度,設(shè)SKIPIF1<0,得到SKIPIF1<0,再分析求值域,判斷取等條件即可求解.【詳解】設(shè)SKIPIF1<0,并根據(jù)題意作如下示意圖,由圖和題意得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以在SKIPIF1<0中,有SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則要使SKIPIF1<0最大,即SKIPIF1<0要取得最小值,即SKIPIF1<0取得最大值,即SKIPIF1<0在SKIPIF1<0取得最大值,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的對(duì)稱軸為:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,即SKIPIF1<0最大,此時(shí)SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即為獲得最佳的射門角度(即SKIPIF1<0最大),則射門時(shí)甲離上方端線的距離為:SKIPIF1<0.故選:B.3.(2022·云南曲靖·二模(文))我國在2020年9月22日在聯(lián)合國大會(huì)提出,二氧化碳排放力爭于2030年前實(shí)現(xiàn)碳達(dá)峰,爭取在2060年前實(shí)現(xiàn)碳中和.為了響應(yīng)黨和國家的號(hào)召,某企業(yè)在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān):把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,經(jīng)測算,該技術(shù)處理總成本y(單位:萬元)與處理量x(單位:噸)SKIPIF1<0之間的函數(shù)關(guān)系可近似表示為SKIPIF1<0,當(dāng)處理量x等于多少噸時(shí),每噸的平均處理成本最少(

)A.120 B.200 C.240 D.400【答案】D【解析】【分析】先根據(jù)題意求出每噸的平均處理成本與處理量之間的函數(shù)關(guān)系,然后分SKIPIF1<0和SKIPIF1<0分析討論求出其最小值即可【詳解】由題意得二氧化碳每噸的平均處理成本為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值240,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),此時(shí)SKIPIF1<0取得最小值200,綜上,當(dāng)每月得理量為400噸時(shí),每噸的平均處理成本最低為200元,故選:D4.(2022·四川·廣安二中二模(文))某公園門票單價(jià)30元,相關(guān)優(yōu)惠政策如下:①10人(含)以上團(tuán)體購票9折優(yōu)惠;②50人(含)以上團(tuán)體購票8折優(yōu)惠;③100人(含)以上團(tuán)體購票7折優(yōu)惠;④購票總額每滿500元減100元(單張票價(jià)不優(yōu)惠).現(xiàn)購買47張門票,合理地設(shè)計(jì)購票方案,則門票費(fèi)用最少為(

)A.1090元 B.1171元 C.1200元 D.1210元【答案】B【解析】分析題意可得購買47張票,最大的優(yōu)惠應(yīng)依據(jù)政策④,故可得應(yīng)分為13張門票享受政策①,34張門票享受政策④,計(jì)算即可.【詳解】由于購票人數(shù)少于50,故政策②,③不可能享受;在合理范圍內(nèi)政策④比政策①要優(yōu)惠;而原價(jià)為SKIPIF1<0,大于1000,不足1500,所以應(yīng)將47張票分為兩部分購買,其中13張門票享受政策①,34張門票享受政策④,即SKIPIF1<0,故選:B.5.(2022·北京·101中學(xué)模擬預(yù)測)根據(jù)統(tǒng)計(jì),一名工人組裝第x件某產(chǎn)品所用的時(shí)間(單位:分鐘)為f(x)=SKIPIF1<0(A,c為常數(shù)).已知工人組裝第4件產(chǎn)品用時(shí)30分鐘,組裝第A件產(chǎn)品用時(shí)15分鐘,那么c和A的值分別是A.75,25 B.75,16 C.60,25 D.60,16【答案】D【解析】【詳解】由題意可得:f(A)=SKIPIF1<0=15,所以c=15SKIPIF1<0而f(4)=SKIPIF1<0=30,可得出SKIPIF1<0=30故SKIPIF1<0=4,可得A=16從而c=15SKIPIF1<0=60故答案為D二、填空題1.(2022·河北·模擬預(yù)測)勞動(dòng)實(shí)踐是大學(xué)生學(xué)習(xí)知識(shí)?鍛煉才干的有效途徑,更是大學(xué)生服務(wù)社會(huì)?回報(bào)社會(huì)的一種良好形式某大學(xué)生去一服裝廠參加勞動(dòng)實(shí)踐,了解到當(dāng)該服裝廠生產(chǎn)的一種衣服日產(chǎn)量為x件時(shí),售價(jià)為s元/件,且滿足SKIPIF1<0,每天的成本合計(jì)為SKIPIF1<0元,請你幫他計(jì)算日產(chǎn)量為___________件時(shí),獲得的日利潤最大,最大利潤為___________萬元.【答案】

200

7.94【解析】【分析】將利潤表示為關(guān)于SKIPIF1<0的一個(gè)二次函數(shù),求出該函數(shù)的最值即可.【詳解】由題意易得日利潤SKIPIF1<0,故當(dāng)日產(chǎn)量為200件時(shí),獲得的日利潤最大,最大利潤為7.94萬元,故答案為:200,7.94.2.(2022·北京市第九中學(xué)模擬預(yù)測)調(diào)查顯示,垃圾分類投放可以帶來約SKIPIF1<0元/千克的經(jīng)濟(jì)效益.為激勵(lì)居民垃圾分類,某市準(zhǔn)備給每個(gè)家庭發(fā)放一張積分卡,每分類投放SKIPIF1<0積分SKIPIF1<0分,若一個(gè)家庭一個(gè)月內(nèi)垃圾分類投放總量不低于SKIPIF1<0,則額外獎(jiǎng)勵(lì)SKIPIF1<0分(SKIPIF1<0為正整數(shù)).月底積分會(huì)按照SKIPIF1<0元/分進(jìn)行自動(dòng)兌換.①當(dāng)SKIPIF1<0時(shí),若某家庭某月產(chǎn)生SKIPIF1<0生活垃圾,該家庭該月積分卡能兌換_____元;②為了保證每個(gè)家庭每月積分卡兌換的金額均不超過當(dāng)月垃圾分類投放帶來的收益的SKIPIF1<0%,則SKIPIF1<0的最大值為___________.【答案】

SKIPIF1<0

SKIPIF1<0【解析】【分析】①計(jì)算出該家庭月底的積分,再拿積分乘以SKIPIF1<0可得出該家庭該月積分卡能兌換的金額;②設(shè)每個(gè)家庭每月產(chǎn)生的垃圾為SKIPIF1<0,每個(gè)家庭月底月積分卡能兌換的金額為SKIPIF1<0元,分SKIPIF1<0、SKIPIF1<0兩種情況討論,計(jì)算SKIPIF1<0的表達(dá)式,結(jié)合SKIPIF1<0可求得SKIPIF1<0的最大值.【詳解】①若某家庭某月產(chǎn)生SKIPIF1<0生活垃圾,則該家庭月底的積分為SKIPIF1<0分,故該家庭該月積分卡能兌換SKIPIF1<0元;②設(shè)每個(gè)家庭每月產(chǎn)生的垃圾為SKIPIF1<0,每個(gè)家庭月底月積分卡能兌換的金額為SKIPIF1<0元.若SKIPIF1<0時(shí),SKIPIF1<0恒成立;若SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0.故SKIPIF1<0的最大值為SKIPIF1<0.故答案為:①SKIPIF1<0;②SKIPIF1<0.3.(2022·重慶·模擬預(yù)測)我國的酒駕標(biāo)準(zhǔn)是指車輛駕駛員血液中的酒精含量大于或者等于SKIPIF1<0,已知一駕駛員某次飲酒后體內(nèi)每SKIPIF1<0血液中的酒精含量SKIPIF1<0(單位:SKIPIF1<0)與時(shí)間SKIPIF1<0(單位:SKIPIF1<0)的關(guān)系是:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,那么該駕駛員在飲酒后至少要經(jīng)過__________SKIPIF1<0才可駕車.【答案】SKIPIF1<0【解析】【分析】根據(jù)二次函數(shù)的單調(diào)性和反比例函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)有最大值SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),飲酒后體內(nèi)每SKIPIF1<0血液中的酒精含量小于SKIPIF1<0,當(dāng)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞減,令SKIPIF1<0,因此飲酒后SKIPIF1<0小時(shí)體內(nèi)每SKIPIF1<0血液中的酒精含量等于SKIPIF1<0,故答案為:SKIPIF1<04.(2022·河南·襄城縣教育體育局教學(xué)研究室二模(文))某景區(qū)套票原價(jià)300元/人,如果多名游客組團(tuán)購買套票,則有如下兩種優(yōu)惠方案供選擇:方案一:若人數(shù)不低于10,則票價(jià)打9折;若人數(shù)不低于50,則票價(jià)打8折;若人數(shù)不低于100,則票價(jià)打7折.不重復(fù)打折.方案二:按原價(jià)計(jì)算,總金額每滿5000元減1000元.已知一個(gè)旅游團(tuán)有47名游客,若可以兩種方案搭配使用,則這個(gè)旅游團(tuán)購票總費(fèi)用的最小值為___________元.【答案】11710【解析】【分析】由題意分析方案一和方案二的單人票價(jià),可得用方案二先購買34張票,剩余13張用方案一,費(fèi)用最小,從而可求出其最小值【詳解】方案一:滿10人可打9折,則單人票價(jià)為270元,方案二:滿5000元減1000元,按原價(jià)計(jì)算SKIPIF1<0,則滿5000元至少湊齊17人,SKIPIF1<0,則單人票價(jià)為SKIPIF1<0,滿10000元時(shí),SKIPIF1<0,則需34人,單人票價(jià)為241元,滿15000元時(shí),SKIPIF1<0,人數(shù)不足,因?yàn)镾KIPIF1<0,所以用方案二先購買34張票,剩余13不滿足方案二,但滿足方案一,所以總費(fèi)用為SKIPIF1<0(元),故答案為:11710三、解答題1.(2022·上海交大附中模擬預(yù)測)自2017年起,上海市開展中小河道綜合整治,全面推進(jìn)“人水相依,延續(xù)風(fēng)貌,豐富設(shè)施,精彩活動(dòng)”的整治目標(biāo).某科學(xué)研究所針對(duì)河道整治問題研發(fā)了一種生物復(fù)合劑.這種生物復(fù)合劑入水后每1個(gè)單位的活性隨時(shí)間SKIPIF1<0(單位:小時(shí))變化的函數(shù)為SKIPIF1<0,已知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值為28,且只有在活性不低于3.5時(shí)才能產(chǎn)生有效作用.(1)試計(jì)算每1個(gè)單位生物復(fù)合劑入水后產(chǎn)生有效作用的時(shí)間;(結(jié)果精確到SKIPIF1<0小時(shí))(2)由于環(huán)境影響,每1個(gè)單位生物復(fù)合劑入水后會(huì)產(chǎn)生損耗,設(shè)損耗剩余量SKIPIF1<0關(guān)于時(shí)間SKIPIF1<0的函數(shù)為SKIPIF1<0,記SKIPIF1<0為每1個(gè)單位生物復(fù)合劑的實(shí)際活性,求出SKIPIF1<0的最大值.(結(jié)果精確到0.1)【答案】(1)SKIPIF1<0小時(shí)(2)6.5【解析】【分析】(1)由SKIPIF1<0求出SKIPIF1<0,分SKIPIF1<0、SKIPIF1<0,解不等式SKIPIF1<0可得答案;(2)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,再令SKIPIF1<0,面積SKIPIF1<0由基本不等式求得最值;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,利用單調(diào)性可得SKIPIF1<0的最大值,再比較可得答案.(1)由于SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即產(chǎn)生有效作用的時(shí)間段為SKIPIF1<0,故產(chǎn)生有效作用的時(shí)間為SKIPIF1<0小時(shí).(2)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0,同時(shí)SKIPIF1<0,再令SKIPIF1<0,則SKIPIF1<0,面積SKIPIF1<0,由基本不等式,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則此時(shí)SKIPIF1<0在SKIPIF1<0是單調(diào)遞減的,則最大值在SKIPIF1<0時(shí)取到,SKIPIF1<0,綜上所述,SKIPIF1<0在SKIPIF1<0上的最大值為6.5.2.(2022·上海靜安·二模)某便民超市經(jīng)銷一種小袋裝地方特色桃酥食品,每袋桃酥的成本為6元,預(yù)計(jì)當(dāng)一袋桃酥的售價(jià)為SKIPIF1<0元SKIPIF1<0時(shí),一年的銷售量為SKIPIF1<0萬袋,并且全年該桃酥食品共需支付SKIPIF1<0萬元的管理費(fèi).一年的利潤SKIPIF1<0一年的銷售量SKIPIF1<0售價(jià)SKIPIF1<0(一年銷售桃酥的成本SKIPIF1<0一年的管理費(fèi)).(單位:萬元)(1)求該超市一年的利潤SKIPIF1<0(萬元)與每袋桃酥食品的售價(jià)SKIPIF1<0的函數(shù)關(guān)系式;(2)當(dāng)每袋桃酥的售價(jià)為多少元時(shí),該超市一年的利潤SKIPIF1<0最大,并求出SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0;(2)售價(jià)為9元時(shí),利潤最大為9萬元【解析】【分析】(1)直接由題目所給關(guān)系即可求得利潤SKIPIF1<0(萬元)與售價(jià)SKIPIF1<0的函數(shù)關(guān)系式;(2)將函數(shù)關(guān)系式變形整理得SKIPIF1<0,結(jié)合基本不等式即可求出最大值.(1)由題意知,分公司一年的利潤L(萬元)與售價(jià)x的函數(shù)關(guān)系式為SKIPIF1<0;(2)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào),此時(shí)SKIPIF1<0最大為9萬元.當(dāng)每件產(chǎn)品的售價(jià)為9元時(shí),該分公司一年的利潤最大,且最大利潤9萬元.題型三:常見的函數(shù)模型:冪指對(duì)型一、單選題1.(2022·江西師大附中三模(文))某種病毒的繁殖速度快?存活時(shí)間長.已知a個(gè)這種病毒在t天后將達(dá)到SKIPIF1<0個(gè),且經(jīng)過4天后病毒的數(shù)量會(huì)達(dá)到原來的2倍.若再過t天后病毒的數(shù)量達(dá)到原來的8倍,則SKIPIF1<0(

)A.4 B.8 C.12 D.16【答案】B【解析】【分析】根據(jù)題意解指數(shù)方程可得參數(shù)SKIPIF1<0的值,通過函數(shù)值為原來的8倍解出SKIPIF1<0,即可得結(jié)果.【詳解】由題意得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.設(shè)經(jīng)過t天后,病毒的數(shù)量達(dá)到原來的8倍,則有SKIPIF1<0,解得SKIPIF1<0.所以再過SKIPIF1<0天,病毒的數(shù)量達(dá)到原來的8倍.故選:B.2.(2022·遼寧葫蘆島·二模)某生物興趣小組為研究一種紅鈴蟲的產(chǎn)卵數(shù)y與溫度x(單位:℃)的關(guān)系.現(xiàn)收集了7組觀測數(shù)據(jù)SKIPIF1<0得到下面的散點(diǎn)圖:由此散點(diǎn)圖,在20℃至36℃之間,下面四個(gè)回歸方程類型中最適宜作為紅鈴蟲產(chǎn)卵數(shù)y和溫度x的回歸方程類型的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】結(jié)合散點(diǎn)圖的特點(diǎn),選擇合適的方程類型作為回歸方程類型.【詳解】由散點(diǎn)圖可以看出紅鈴蟲產(chǎn)卵數(shù)y隨著溫度x的增長速度越來越快,所以SKIPIF1<0最適宜作為紅鈴蟲產(chǎn)卵數(shù)y和溫度x的回歸方程類型.故選:C3.(2022·湖南衡陽·三模)深度學(xué)習(xí)是人工智能的一種具有代表性的實(shí)現(xiàn)方法,它是以神經(jīng)網(wǎng)絡(luò)為出發(fā)點(diǎn)的.在神經(jīng)網(wǎng)絡(luò)優(yōu)化中,指數(shù)衰減的學(xué)習(xí)率模型為SKIPIF1<0,其中SKIPIF1<0表示每一輪優(yōu)化時(shí)使用的學(xué)習(xí)率,SKIPIF1<0表示初始學(xué)習(xí)率,SKIPIF1<0表示衰減系數(shù),SKIPIF1<0表示訓(xùn)練迭代輪數(shù),SKIPIF1<0表示衰減速度.已知某個(gè)指數(shù)衰減的學(xué)習(xí)率模型的初始學(xué)習(xí)率為0.5,衰減速度為18,且當(dāng)訓(xùn)練迭代輪數(shù)為18時(shí),學(xué)習(xí)率衰減為0.4,則學(xué)習(xí)率衰減到0.1以下(不含0.1)所需的訓(xùn)練迭代輪數(shù)至少為(參考數(shù)據(jù):SKIPIF1<0)(

)A.128 B.130 C.132 D.134【答案】B【解析】【分析】由已知可得SKIPIF1<0,再由SKIPIF1<0,結(jié)合指對(duì)數(shù)關(guān)系及對(duì)數(shù)函數(shù)的性質(zhì)求解即可.【詳解】由題設(shè),SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以所需的訓(xùn)練迭代輪數(shù)至少為130次.故選:B4.(2022·北京·二模)某工廠產(chǎn)生的廢氣經(jīng)過濾后排放,過濾過程中廢氣的污染物含量P(單位:SKIPIF1<0)與時(shí)間t(單位:h)間的關(guān)系為SKIPIF1<0,其中SKIPIF1<0,k是正的常數(shù).如果在前SKIPIF1<0污染物減少SKIPIF1<0,那么再過SKIPIF1<0后污染物還剩余(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)給定的函數(shù)模型及已知可得SKIPIF1<0,再計(jì)算SKIPIF1<0后污染物剩余量.【詳解】由題設(shè),SKIPIF1<0,可得SKIPIF1<0,再過5個(gè)小時(shí),SKIPIF1<0,所以最后還剩余SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論