湖北省黃岡市名校2024屆中考四模數(shù)學(xué)試題含解析_第1頁
湖北省黃岡市名校2024屆中考四模數(shù)學(xué)試題含解析_第2頁
湖北省黃岡市名校2024屆中考四模數(shù)學(xué)試題含解析_第3頁
湖北省黃岡市名校2024屆中考四模數(shù)學(xué)試題含解析_第4頁
湖北省黃岡市名校2024屆中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省黃岡市名校2024屆中考四模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列函數(shù)中,當(dāng)x>0時(shí),y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.2.已知線段AB=8cm,點(diǎn)C是直線AB上一點(diǎn),BC=2cm,若M是AB的中點(diǎn),N是BC的中點(diǎn),則線段MN的長(zhǎng)度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm3.如圖,已知正方形ABCD的邊長(zhǎng)為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①≌;②;③∠GDE=45°;④DG=DE在以上4個(gè)結(jié)論中,正確的共有()個(gè)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.5.如圖,已知點(diǎn)A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點(diǎn),且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣46.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個(gè)實(shí)根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.7.已知點(diǎn)M、N在以AB為直徑的圓O上,∠MON=x°,∠MAN=y°,則點(diǎn)(x,y)一定在()A.拋物線上 B.過原點(diǎn)的直線上 C.雙曲線上 D.以上說法都不對(duì)8.如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,…,則B2017的坐標(biāo)為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)9.已知關(guān)于x的不等式組至少有兩個(gè)整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)10.我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,矩形ABCD中,AB=3,對(duì)角線AC,BD相交于點(diǎn)O,AE垂直平分OB于點(diǎn)E,則AD的長(zhǎng)為____________.12.方程x+1=的解是_____.13.如圖,菱形ABCD的對(duì)角線的長(zhǎng)分別為2和5,P是對(duì)角線AC上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.14.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點(diǎn)D,以點(diǎn)D為圓心作⊙D,使得點(diǎn)A在⊙D外,且點(diǎn)B在⊙D內(nèi).設(shè)⊙D的半徑為r,那么r的取值范圍是_________.15.已知x1、x2是一元二次方程x2﹣2x﹣1=0的兩實(shí)數(shù)根,則1216.在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(a,3),點(diǎn)B的坐標(biāo)是(4,b),若點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則ab=_____.三、解答題(共8題,共72分)17.(8分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長(zhǎng).拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對(duì)稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫出β的取值范圍.18.(8分)如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.判斷直線CD和⊙O的位置關(guān)系,并說明理由.過點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若AC=2,⊙O的半徑是3,求BE的長(zhǎng).19.(8分)計(jì)算:sin30°?tan60°+..20.(8分)如圖,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),.點(diǎn)在函數(shù)圖像上,軸,且,直線是拋物線的對(duì)稱軸,是拋物線的頂點(diǎn).求、的值;如圖①,連接,線段上的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好在線段上,求點(diǎn)的坐標(biāo);如圖②,動(dòng)點(diǎn)在線段上,過點(diǎn)作軸的垂線分別與交于點(diǎn),與拋物線交于點(diǎn).試問:拋物線上是否存在點(diǎn),使得與的面積相等,且線段的長(zhǎng)度最?。咳绻嬖?,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.21.(8分)省教育廳決定在全省中小學(xué)開展“關(guān)注校車、關(guān)愛學(xué)生”為主題的交通安全教育宣傳周活動(dòng),某中學(xué)為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)圖中提供的信息,解答下列問題.m=%,這次共抽取名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?如果該校共有1500名學(xué)生,請(qǐng)你估計(jì)該校騎自行車上學(xué)的學(xué)生有多少名?22.(10分)計(jì)算:(-)-2–2()+23.(12分)第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會(huì)又舉辦過冬奧會(huì)的城市.某區(qū)舉辦了一次冬奧知識(shí)網(wǎng)上答題競(jìng)賽,甲、乙兩校各有名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績(jī)情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.[收集數(shù)據(jù)]從甲、乙兩校各隨機(jī)抽取名學(xué)生,在這次競(jìng)賽中他們的成績(jī)?nèi)缦?甲:乙:[整理、描述數(shù)據(jù)]按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):學(xué)校人數(shù)成績(jī)甲乙(說明:優(yōu)秀成績(jī)?yōu)椋己贸煽?jī)?yōu)楹细癯煽?jī)?yōu)?)[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:學(xué)校平均分中位數(shù)眾數(shù)甲乙其中.[得出結(jié)論](1)小明同學(xué)說:“這次競(jìng)賽我得了分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是_校的學(xué)生;(填“甲”或“乙”)(2)張老師從乙校隨機(jī)抽取--名學(xué)生的競(jìng)賽成績(jī),試估計(jì)這名學(xué)生的競(jìng)賽成績(jī)?yōu)閮?yōu)秀的概率為_;(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競(jìng)賽成績(jī)較好的學(xué)校,并說明理由:;(至少?gòu)膬蓚€(gè)不同的角度說明推斷的合理性)24.如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點(diǎn)C作直線CE,使CE⊥BC于點(diǎn)C,交BD的延長(zhǎng)線于點(diǎn)E,連接AE;(2)求證:四邊形ABCE是矩形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】A、、∵y=x2,∴對(duì)稱軸x=0,當(dāng)圖象在對(duì)稱軸右側(cè),y隨著x的增大而增大;而在對(duì)稱軸左側(cè),y隨著x的增大而減小,故此選項(xiàng)錯(cuò)誤B、k>0,y隨x增大而增大,故此選項(xiàng)錯(cuò)誤C、B、k>0,y隨x增大而增大,故此選項(xiàng)錯(cuò)誤D、y=(x>0),反比例函數(shù),k>0,故在第一象限內(nèi)y隨x的增大而減小,故此選項(xiàng)正確2、B【解題分析】(1)如圖1,當(dāng)點(diǎn)C在點(diǎn)A和點(diǎn)B之間時(shí),∵點(diǎn)M是AB的中點(diǎn),點(diǎn)N是BC的中點(diǎn),AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),∵點(diǎn)M是AB的中點(diǎn),點(diǎn)N是BC的中點(diǎn),AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長(zhǎng)度為5cm或3cm.故選B.點(diǎn)睛:解本題時(shí),由于題目中告訴的是點(diǎn)C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關(guān)系要分點(diǎn)C在線段AB上和點(diǎn)C在線段AB的延長(zhǎng)線上兩種情況分析解答,不要忽略了其中任何一種.3、C【解題分析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯(cuò)誤的.【題目詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯(cuò)誤;∴正確說法是①②③故選:C【題目點(diǎn)撥】本題綜合性較強(qiáng),考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,有一定的難度.4、B【解題分析】

延長(zhǎng)AD交BC的延長(zhǎng)線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點(diǎn)睛:本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.5、D【解題分析】

首先過點(diǎn)A作AC⊥x軸于C,過點(diǎn)B作BD⊥x軸于D,易得△OBD∽△AOC,又由點(diǎn)A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【題目詳解】解:過點(diǎn)A作AC⊥x軸于C,過點(diǎn)B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.【題目點(diǎn)撥】此題考查了相似三角形的判定與性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì).解題時(shí)注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法。6、D【解題分析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個(gè)實(shí)根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點(diǎn)評(píng):本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.7、B【解題分析】

由圓周角定理得出∠MON與∠MAN的關(guān)系,從而得出x與y的關(guān)系式,進(jìn)而可得出答案.【題目詳解】∵∠MON與∠MAN分別是弧MN所對(duì)的圓心角與圓周角,∴∠MAN=∠MON,∴,∴點(diǎn)(x,y)一定在過原點(diǎn)的直線上.故選B.【題目點(diǎn)撥】本題考查了圓周角定理及正比例函數(shù)圖像的性質(zhì),熟練掌握?qǐng)A周角定理是解答本題的關(guān)鍵.8、B【解題分析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵3=336×6+1,∴點(diǎn)B1向右平移1322(即336×2)到點(diǎn)B3.∵B1的坐標(biāo)為(1.5,),∴B3的坐標(biāo)為(1.5+1322,),故選B.點(diǎn)睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉(zhuǎn)6次,圖形向右平移2”是解題的關(guān)鍵.9、A【解題分析】

依據(jù)不等式組至少有兩個(gè)整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進(jìn)而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個(gè).【題目詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個(gè)整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個(gè),故選:A.【題目點(diǎn)撥】此題考查的是一元一次不等式組的解法和三角形的三邊關(guān)系的運(yùn)用,求不等式組的解集應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.10、B【解題分析】

設(shè)大馬有匹,小馬有匹,根據(jù)題意可得等量關(guān)系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程即可.【題目詳解】解:設(shè)大馬有匹,小馬有匹,由題意得:,故選:B.【題目點(diǎn)撥】本題主要考查的是由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解題分析】試題解析:∵四邊形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=.【題目點(diǎn)撥】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.12、x=1【解題分析】

無理方程兩邊平方轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到無理方程的解.【題目詳解】?jī)蛇吰椒降茫海▁+1)1=1x+5,即x1=4,

開方得:x=1或x=-1,

經(jīng)檢驗(yàn)x=-1是增根,無理方程的解為x=1.

故答案為x=113、【解題分析】

根據(jù)題意可得陰影部分的面積等于△ABC的面積,因?yàn)椤鰽BC的面積是菱形面積的一半,根據(jù)已知可求得菱形的面積則不難求得陰影部分的面積.【題目詳解】設(shè)AP,EF交于O點(diǎn),∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.14、.【解題分析】

先根據(jù)勾股定理求出AB的長(zhǎng),進(jìn)而得出CD的長(zhǎng),由點(diǎn)與圓的位置關(guān)系即可得出結(jié)論.【題目詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設(shè)AD=x,BD=1-x.解得x=,∴點(diǎn)A在圓外,點(diǎn)B在圓內(nèi),r的范圍是,故答案為.【題目點(diǎn)撥】本題考查的是點(diǎn)與圓的位置關(guān)系,熟知點(diǎn)與圓的三種位置關(guān)系是解答此題的關(guān)鍵.15、6【解題分析】

已知x1,x2是一元二次方程x2﹣2x﹣1=0的兩實(shí)數(shù)根,根據(jù)方程解的定義及根與系數(shù)的關(guān)系可得x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,代入所給的代數(shù)式,再利用完全平方公式變形,整體代入求值即可.【題目詳解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的兩實(shí)數(shù)根,∴x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,∴12x1故答案為6.【題目點(diǎn)撥】本題考查了一元二次方程解的定義及根與系數(shù)的關(guān)系,會(huì)熟練運(yùn)用整體思想是解決本題的關(guān)鍵.16、1【解題分析】【分析】直接利用關(guān)于原點(diǎn)對(duì)稱點(diǎn)的性質(zhì)得出a,b的值,進(jìn)而得出答案.【題目詳解】∵點(diǎn)A的坐標(biāo)為(a,3),點(diǎn)B的坐標(biāo)是(4,b),點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【題目點(diǎn)撥】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),熟知關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)的橫、縱坐標(biāo)互為相反數(shù)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解題分析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對(duì)稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長(zhǎng),根據(jù)垂徑定理就可求出折痕的長(zhǎng).拓展:(1)過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時(shí),可知ON⊥A′N,則可知α=45°,當(dāng)O′在時(shí),連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí)α的取值范圍是0°<α<30°或45°≤α<90°.【題目詳解】發(fā)現(xiàn):(1)過點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對(duì)稱點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長(zhǎng)為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時(shí),則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時(shí),連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點(diǎn)P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時(shí),點(diǎn)O′在半圓上,∴當(dāng)0°<α<30°時(shí)點(diǎn)O′在半圓內(nèi),線段NO′與半圓只有一個(gè)公共點(diǎn)B;當(dāng)α增大到45°時(shí)NA′與半圓相切,即線段NO′與半圓只有一個(gè)公共點(diǎn)B.當(dāng)α繼續(xù)增大時(shí),點(diǎn)P逐漸靠近點(diǎn)N,但是點(diǎn)P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個(gè)公共點(diǎn)B.綜上所述0°<α<30°或45°≤α<90°.【題目點(diǎn)撥】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對(duì)的直角邊等于斜邊的一半、翻折問題等知識(shí),正確的作出輔助線是解題的關(guān)鍵.18、解:(1)直線CD和⊙O的位置關(guān)系是相切,理由見解析(2)BE=1.【解題分析】試題分析:(1)連接OD,可知由直徑所對(duì)的圓周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,從而得∠CDO=90°,根據(jù)切線的判定即可得出;(2)由已知利用勾股定理可求得DC的長(zhǎng),根據(jù)切線長(zhǎng)定理有DE=EB,根據(jù)勾股定理得出方程,求出方程的解即可.試題解析:(1)直線CD和⊙O的位置關(guān)系是相切,理由是:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直線CD是⊙O的切線,即直線CD和⊙O的位置關(guān)系是相切;(2)∵AC=2,⊙O的半徑是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,設(shè)DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,則(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考點(diǎn):1、切線的判定與性質(zhì);2、切線長(zhǎng)定理;3、勾股定理;4、圓周角定理19、【解題分析】試題分析:把相關(guān)的特殊三角形函數(shù)值代入進(jìn)行計(jì)算即可.試題解析:原式=.20、(1),;(2)點(diǎn)的坐標(biāo)為;(3)點(diǎn)的坐標(biāo)為和【解題分析】

(1)根據(jù)二次函數(shù)的對(duì)稱軸公式,拋物線上的點(diǎn)代入,即可;(2)先求F的對(duì)稱點(diǎn),代入直線BE,即可;(3)構(gòu)造新的二次函數(shù),利用其性質(zhì)求極值.【題目詳解】解:(1)軸,,拋物線對(duì)稱軸為直線點(diǎn)的坐標(biāo)為解得或(舍去),(2)設(shè)點(diǎn)的坐標(biāo)為對(duì)稱軸為直線點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為.直線經(jīng)過點(diǎn)利用待定系數(shù)法可得直線的表達(dá)式為.因?yàn)辄c(diǎn)在上,即點(diǎn)的坐標(biāo)為(3)存在點(diǎn)滿足題意.設(shè)點(diǎn)坐標(biāo)為,則作垂足為①點(diǎn)在直線的左側(cè)時(shí),點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為在中,時(shí),取最小值.此時(shí)點(diǎn)的坐標(biāo)為②點(diǎn)在直線的右側(cè)時(shí),點(diǎn)的坐標(biāo)為同理,時(shí),取最小值.此時(shí)點(diǎn)的坐標(biāo)為綜上所述:滿足題意得點(diǎn)的坐標(biāo)為和考點(diǎn):二次函數(shù)的綜合運(yùn)用.21、(1)、26%;50;(2)、公交車;(3)、300名.【解題分析】試題分析:(1)、用1減去其它3個(gè)的百分比,從而得出m的值;根據(jù)乘公交車的人數(shù)和百分比得出總?cè)藬?shù),然后求出騎自行車的人數(shù),將圖形補(bǔ)全;(2)、根據(jù)條形統(tǒng)計(jì)圖得出哪種人數(shù)最多;(3)、根據(jù)全校的總?cè)藬?shù)×騎自行車的百分比得出人數(shù).試題解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;騎自行車人數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論