2023-2024學(xué)年湖南省茶陵三中高一上數(shù)學(xué)期末檢測試題含解析_第1頁
2023-2024學(xué)年湖南省茶陵三中高一上數(shù)學(xué)期末檢測試題含解析_第2頁
2023-2024學(xué)年湖南省茶陵三中高一上數(shù)學(xué)期末檢測試題含解析_第3頁
2023-2024學(xué)年湖南省茶陵三中高一上數(shù)學(xué)期末檢測試題含解析_第4頁
2023-2024學(xué)年湖南省茶陵三中高一上數(shù)學(xué)期末檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年湖南省茶陵三中高一上數(shù)學(xué)期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.若方程x2+2x+m2+3m=mcos(x+1)+7有且僅有1個實數(shù)根,則實數(shù)m的值為()A.2 B.-2C.4 D.-42.設(shè)一個半徑為r的球的球心為空間直角坐標系的原點O,球面上有兩個點A,B,其坐標分別為(1,2,2),(2,-2,1),則()A. B.C. D.3.下列函數(shù)中在定義域上為減函數(shù)的是()A. B.C. D.4.命題“,”的否定是A., B.,C., D.,5.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點P(-2,4),則下列不等關(guān)系正確的是()A. B.C. D.6.下列函數(shù)是偶函數(shù)且值域為的是()①;②;③;④A.①② B.②③C.①④ D.③④7.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)取值范圍為A. B.C. D.8.函數(shù)的圖象大致為A. B.C. D.9.為了抗擊新型冠狀病毒肺炎,保障師生安全,學(xué)校決定每天對教室進行消毒工作,已知藥物釋放過程中,室內(nèi)空氣中含藥量y()與時間t(h)成正比();藥物釋放完畢后,y與t的函數(shù)關(guān)系式為(a為常數(shù),),據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.5()以下時,學(xué)生方可進教室,則學(xué)校應(yīng)安排工作人員至少提前()分鐘進行消毒工作A.25 B.30C.45 D.6010.某流行病調(diào)查中心的疾控人員針對該地區(qū)某類只在人與人之間相互傳染的疾病,通過現(xiàn)場調(diào)查與傳染源傳播途徑有關(guān)的蛛絲馬跡,根據(jù)傳播鏈及相關(guān)數(shù)據(jù),建立了與傳染源相關(guān)確診病例人數(shù)與傳染源感染后至隔離前時長t(單位:天)的模型:.已知甲傳染源感染后至隔離前時長為5天,與之相關(guān)確診病例人數(shù)為8;乙傳染源感染后至隔離前時長為8天,與之相關(guān)確診病例人數(shù)為20.若某傳染源感染后至隔離前時長為兩周,則與之相關(guān)確診病例人數(shù)約為()A.44 B.48C.80 D.12511.函數(shù)的最小值為()A. B.3C. D.12.已知不等式的解集為,則不等式的解集是()A. B.C.或 D.或二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若命題“是假命題”,則實數(shù)的取值范圍是___________.14.已知直線與兩坐標軸所圍成的三角形的面積為1,則實數(shù)值是____________15.從含有兩件正品和一件次品b的3件產(chǎn)品中,按先后順序任意取出兩件產(chǎn)品,每次取出后不放回,取出的兩件產(chǎn)品都是正品的概率為__________.16.在中,,,與的夾角為,則_____三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.知,.(Ⅰ)若為真命題,求實數(shù)的取值范圍;(Ⅱ)若為成立的充分不必要條件,求實數(shù)的取值范圍.18.已知函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1(1)求實數(shù)a的值;(2)若關(guān)于x的方程f(log2x)+1﹣2klog2x=0在[2,4]上有解,求實數(shù)k的取值范圍;(3)若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求實數(shù)m的取值范圍.(附:函數(shù)g(t)=t在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增.)19.在三棱錐中,,,O是線段AC的中點,M是線段BC的中點.(1)求證:PO⊥平面ABC;(2)求直線PM與平面PBO所成的角的正弦值.20.如圖,在中,,,點在的延長線上,點是邊上的一點,且存在非零實數(shù),使.(Ⅰ)求與的數(shù)量積;(Ⅱ)求與的數(shù)量積.21.已知(1)化簡(2)若是第三象限角,且,求的值22.設(shè)函數(shù).(1)求函數(shù)的最小正周期和對稱軸方程;(2)求函數(shù)在上的最大值與最小值及相對應(yīng)的的值.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】令,由對稱軸為,可得,解出,并驗證即可.【詳解】依題意,有且僅有1個實數(shù)根.令,對稱軸為.所以,解得或.當(dāng)時,,易知是連續(xù)函數(shù),又,,所以在上也必有零點,此時不止有一個零點,故不合題意;當(dāng)時,,此時只有一個零點,故符合題意.綜上,.故選:A【點睛】關(guān)鍵點點睛:構(gòu)造函數(shù),求出的對稱軸,利用對稱的性質(zhì)得出.2、C【解析】由已知求得球的半徑,再由空間中兩點間的距離公式求得|AB|,則答案可求【詳解】∵由已知可得r,而|AB|,∴|AB|r故選C【點睛】本題考查空間中兩點間距離公式的應(yīng)用,是基礎(chǔ)題3、C【解析】根據(jù)基本初等函數(shù)的單調(diào)性逐一判斷各個選項即可得出答案.【詳解】對于A,由函數(shù),定義域為,且在上遞增,故A不符題意;對于B,由函數(shù),定義域為,且在上遞增,故B不符題意;對于C,由函數(shù),定義域為,且在上遞減,故C符合題意;對于D,由函數(shù),定義域為,且在上遞增,故D不符題意.故選:C4、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點:全稱命題與特稱命題5、A【解析】根據(jù)冪函數(shù)的圖像經(jīng)過點,可得函數(shù)解析式,然后利用函數(shù)單調(diào)性即可比較得出大小關(guān)系【詳解】因為冪函數(shù)的圖像經(jīng)過點,所以,解得,所以函數(shù)解析式為:,易得為偶函數(shù)且在單調(diào)遞減,在單調(diào)遞增A:,正確;B:,錯誤;C:,錯誤;D:,錯誤故選A【點睛】本題考查利用待定系數(shù)法求解函數(shù)解析式,函數(shù)奇偶性和單調(diào)性的關(guān)系:奇函數(shù)在對應(yīng)區(qū)間的函數(shù)單調(diào)性相同;偶函數(shù)在對應(yīng)區(qū)間的函數(shù)單調(diào)性相反6、C【解析】根據(jù)奇偶性的定義依次判斷,并求函數(shù)的值域即可得答案.【詳解】對于①,是偶函數(shù),且值域為;對于②,是奇函數(shù),值域為;對于③,是偶函數(shù),值域為;對于④,偶函數(shù),且值域為,所以符合題意的有①④故選:C.7、B【解析】分別求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的關(guān)系式,解出即可.【詳解】對于函數(shù),當(dāng)時,,由,可得,當(dāng)時,,由,可得,對任意,,對于函數(shù),,,,對于,使得,對任意,總存在,使得成立,,解得,實數(shù)的取值范圍為,故選B【點睛】本題主要考查函數(shù)的最值、全稱量詞與存在量詞的應(yīng)用.屬于難題.解決這類問題的關(guān)鍵是理解題意、正確把問題轉(zhuǎn)化為最值和解不等式問題,全稱量詞與存在量詞的應(yīng)用共分四種情況:(1)只需;(2),只需;(3),只需;(4),,.8、A【解析】利用函數(shù)為奇函數(shù)及在時函數(shù)值正負,即可得答案.【詳解】由于函數(shù)的定義域關(guān)于原點對稱,且,所以函數(shù)的奇函數(shù),排除B,C選項;又因為,故排除D選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式選擇函數(shù)的圖象,考查數(shù)形結(jié)合思想,求解時注意根據(jù)解析式發(fā)現(xiàn)函數(shù)為奇函數(shù)及特殊點函數(shù)值的正負.9、C【解析】計算函數(shù)解析式,取計算得到答案.【詳解】∵函數(shù)圖像過點,∴,當(dāng)時,取,解得小時分鐘,所以學(xué)校應(yīng)安排工作人員至少提前45分鐘進行消毒工作.故選:C.10、D【解析】根據(jù)求得,由此求得的值.【詳解】依題意得,,,所以.故若某傳染源感染后至隔離前時長為兩周,則相關(guān)確診病例人數(shù)約為125.故選:D11、C【解析】運用乘1法,可得,再利用基本不等式求最值即可.【詳解】由三角函數(shù)的性質(zhì)知當(dāng)且僅當(dāng),即,即,時,等號成立.故選:C【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.12、A【解析】由不等式的解集為,可得的根為,由韋達定理可得的值,代入不等式解出其解集即可.【詳解】的解集為,則的根為,即,,解得,則不等式可化為,即為,解得或,故選:A.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、####【解析】等價于,解即得解.【詳解】解:因為命題“是假命題”,所以,所以.故答案為:14、1或-1【解析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.15、【解析】基本事件總數(shù)6,取出的兩件產(chǎn)品都是正品包含的基本事件個數(shù)2,由此能求出取出的兩件產(chǎn)品都是正品的概率.【詳解】從含有兩件正品和一件次品的3件產(chǎn)品中,按先后順序任意取出兩件產(chǎn)品,每次取出后不放回,共包含,,,,,6個基本事件,取出的兩件產(chǎn)品都是正品包含,2個基本事件,∴取出的兩件產(chǎn)品都是正品的概率為,故答案為:.16、【解析】利用平方運算可將問題轉(zhuǎn)化為數(shù)量積和模長的運算,代入求得,開方得到結(jié)果.【詳解】【點睛】本題考查向量模長的求解問題,關(guān)鍵是能夠通過平方運算將問題轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積和模長的運算,屬于常考題型.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式即得;(Ⅱ)再求出不等式的解,由充分不必要條件與集合包含的關(guān)系得出不等關(guān)系,可求得結(jié)論【詳解】(Ⅰ)若為真命題,解不等式得,實數(shù)的取值范圍是.(Ⅱ)解不等式得,為成立的充分不必要條件,是的真子集.且等號不同時取到,得.實數(shù)的取值范圍是.【點睛】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)是的充分不必要條件,則對應(yīng)集合是對應(yīng)集合的真子集;(3)是的充分必要條件,則對應(yīng)集合與對應(yīng)集合相等;(4)是的既不充分又不必要條件,對的集合與對應(yīng)集合互不包含18、(1)﹣1;(2)0≤t;(3)m≤﹣3或m≥3【解析】(1)由二次函數(shù)的圖像與性質(zhì)即可求解.(2)采用換元把方程化為t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分離參數(shù)法,化為t與2+2k在[1,2]上有交點即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把問題轉(zhuǎn)化為1≤m2﹣2mp﹣2恒成立,研究關(guān)于的函數(shù)h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【詳解】(1)函數(shù)f(x)=x2﹣2x+1+a對稱軸為x=1,所以區(qū)間[1,2]上f(x)min=f(1)=a,由根據(jù)題意函數(shù)f(x)=x2﹣2x+1+a在區(qū)間[1,2]上有最小值﹣1所以a=﹣1(2)由(1)知f(x)=x2﹣2x,若關(guān)于x的方程f(log2x)+1﹣2k?log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]則f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t2+2k在[1,2]上有解,令函數(shù)g(t)=t,在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增所以g(1)≤2+2k≤g(2),即2≤2+2t,解得0≤t(3)若對任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,若對任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,則1≤m2﹣2mp﹣2,即m2﹣2mp﹣3≥0,令h(p)=﹣2mp+m2﹣3,所以h(﹣1)=2m+m2﹣3≥0,且h(1)=﹣2m+m2﹣3≥0,解得m≤﹣3或m≥3【點睛】本題主要考查了二次函數(shù)的圖像與性質(zhì)、函數(shù)與方程以及不等式恒成立問題,綜合性比較強,需有較強的邏輯推理能力,屬于難題.19、(1)證明見解析;(2)【解析】(1)利用勾股定理得出線線垂直,結(jié)合等邊三角形的特點,再次利用勾股定理得出線線垂直,進而得出線面垂直;(2)根據(jù)線面垂直面,得出線和面的夾角,從而得出線面角的正弦值.【詳解】(1)由,有,從而有,且又是邊長等于的等邊三角形,.又,從而有又平面.(2)過點作交于點,連.由(1)知平面,得,又平面是直線與平面所成的角.由(1),從而為線段的中點,,,所以直線與平面所成的角的正弦值為20、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,從而得到三角形為等腰三角形,可得,由數(shù)量積的定義可得.(Ⅱ)根據(jù)所給的向量式可得點在的角平分線上,故可得,所以,因為,所以得到.設(shè)設(shè),則得到,,根據(jù)數(shù)量積的定義及運算率可得所求試題解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以點在的角平分線上,又因為點是邊上的一點,所以由角平分線性質(zhì)定理得,所以.因為,所以.設(shè),則,由,得,所以,又,所以點睛:解題時注意在三角形中常見的向量與幾何特征的關(guān)系:(1)在中,若或,則點是的外心;(2)在中,若,則點是的重心;(3)在中,若,則直線一定過的重心;(4)在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論