版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省珠海市紫荊中學(xué)中考數(shù)學(xué)猜題卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣12.已知拋物線y=(x﹣)(x﹣)(a為正整數(shù))與x軸交于Ma、Na兩點,以MaNa表示這兩點間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.3.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學(xué)幫他想了一個主意:先在地上取一個可以直接到達(dá)A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m4.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)5.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個6.某班同學(xué)畢業(yè)時都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1035張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10357.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°8.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°9.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°10.下列運算正確的是()A.a(chǎn)6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=111.在數(shù)軸上標(biāo)注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④12.二次函數(shù)的最大值為()A.3 B.4C.5 D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線交于點,,與軸負(fù)半軸,軸正半軸分別交于點,,,的延長線相交于點,則的值是_________.14.地球上的海洋面積約為361000000km1,則科學(xué)記數(shù)法可表示為_______km1.15.觀察下列一組數(shù):,它們是按一定規(guī)律排列的,那么這一組數(shù)的第n個數(shù)是_____.16.16的算術(shù)平方根是.17.若關(guān)于x的一元二次方程kx2+2(k+1)x+k-1=0有兩個實數(shù)根,則k的取值范圍是18.如圖AB是直徑,C、D、E為圓周上的點,則______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進(jìn)15米到點B處測得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)20.(6分)今年5月,某大型商業(yè)集團(tuán)隨機抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.評估成績n(分)
評定等級
頻數(shù)
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根據(jù)以上信息解答下列問題:(1)求m的值;(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大??;(結(jié)果用度、分、秒表示)(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.21.(6分)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校36個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,回答下列問題:(1)請你將條形統(tǒng)計圖補充完整;并估計全校共征集了_____件作品;(2)如果全校征集的作品中有4件獲得一等獎,其中有3名作者是男生,1名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求選取的兩名學(xué)生恰好是一男一女的概率.22.(8分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進(jìn)的“計算機輔助電話訪問系統(tǒng)”(簡稱CATI系統(tǒng)),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進(jìn)行了400個電話抽樣調(diào)查.并根據(jù)每個年齡段的抽查人數(shù)和該年齡段對博覽會總體印象感到滿意的人數(shù)繪制了下面的圖(1)和圖(1)(部分)根據(jù)上圖提供的信息回答下列問題:(1)被抽查的居民中,人數(shù)最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數(shù),并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數(shù)÷該年齡段被抽查人數(shù)×100%.23.(8分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標(biāo).24.(10分)已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實數(shù)m,使得點P(m,m)在該拋物線上,我們稱點P(m,m)是這個拋物線上的一個“和諧點”.(1)當(dāng)a=2,b=1時,求該拋物線的“和諧點”;(2)若對于任意實數(shù)b,拋物線上恒有兩個不同的“和諧點”A、B.①求實數(shù)a的取值范圍;②若點A,B關(guān)于直線y=﹣x﹣(+1)對稱,求實數(shù)b的最小值.25.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.26.(12分)武漢市某中學(xué)的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為“垃圾分類知多少”的專題調(diào)查活動,采取隨機抽樣的方式進(jìn)行問卷調(diào)查,問卷詞查的結(jié)果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:等級非常了解比較了解只聽說過不了解頻數(shù)40120364頻率0.2m0.180.02(1)本次問卷調(diào)查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數(shù)據(jù),寫出等級及其百分比;根據(jù)表中的數(shù)據(jù)計算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計圖所對應(yīng)的扇形的圓心角的度數(shù);(3)若該校有學(xué)生1500人,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中“比較了解”垃圾分類知識的人數(shù)約為多少?27.(12分)為了維護(hù)國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達(dá)B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.2、C【解題分析】
代入y=0求出x的值,進(jìn)而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結(jié)論.【題目詳解】解:當(dāng)y=0時,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【題目點撥】本題考查了拋物線與x軸的交點坐標(biāo)、二次函數(shù)圖象上點的坐標(biāo)特征以及規(guī)律型中數(shù)字的變化類,利用二次函數(shù)圖象上點的坐標(biāo)特征求出MaNa的值是解題的關(guān)鍵.3、D【解題分析】
根據(jù)三角形的中位線定理即可得到結(jié)果.【題目詳解】解:由題意得AB=2DE=20cm,故選D.【題目點撥】本題考查的是三角形的中位線,解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.4、A【解題分析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A5、D【解題分析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).6、B【解題分析】試題分析:如果全班有x名同學(xué),那么每名同學(xué)要送出(x-1)張,共有x名學(xué)生,那么總共送的張數(shù)應(yīng)該是x(x-1)張,即可列出方程.∵全班有x名同學(xué),∴每名同學(xué)要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應(yīng)該是x(x-1)=1.故選B考點:由實際問題抽象出一元二次方程.7、C【解題分析】
由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應(yīng)用.【題目詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【題目點撥】考查平行線的判定,掌握平行線的判定定理是解題的關(guān)鍵.8、D【解題分析】
根據(jù)鄰補角的定義求出與外角相鄰的內(nèi)角,再根據(jù)等腰三角形的性質(zhì)分情況解答.【題目詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內(nèi)角為180°?100°=80°,當(dāng)80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【題目點撥】本題考查了等腰三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì).9、D【解題分析】
根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【題目詳解】∵直線EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故選D.【題目點撥】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.10、B【解題分析】
A、根據(jù)同底數(shù)冪的除法法則計算;
B、根據(jù)同底數(shù)冪的乘法法則計算;
C、根據(jù)積的乘方法則進(jìn)行計算;
D、根據(jù)合并同類項法則進(jìn)行計算.【題目詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【題目點撥】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,積的乘方,熟記它們的運算法則是解題的關(guān)鍵.11、C【解題分析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應(yīng)在③段上.故選C考點:實數(shù)與數(shù)軸的關(guān)系12、C【解題分析】試題分析:先利用配方法得到y(tǒng)=﹣(x﹣1)2+1,然后根據(jù)二次函數(shù)的最值問題求解.解:y=﹣(x﹣1)2+1,∵a=﹣1<0,∴當(dāng)x=1時,y有最大值,最大值為1.故選C.考點:二次函數(shù)的最值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】
連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【題目詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【題目點撥】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關(guān)鍵.14、3.61×2【解題分析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】將361000000用科學(xué)記數(shù)法表示為3.61×2.故答案為3.61×2.15、【解題分析】試題解析:根據(jù)題意得,這一組數(shù)的第個數(shù)為:故答案為點睛:觀察已知一組數(shù)發(fā)現(xiàn):分子為從1開始的連續(xù)奇數(shù),分母為從2開始的連續(xù)正整數(shù)的平方,寫出第個數(shù)即可.16、4【解題分析】
正數(shù)的正的平方根叫算術(shù)平方根,0的算術(shù)平方根還是0;負(fù)數(shù)沒有平方根也沒有算術(shù)平方根∵∴16的平方根為4和-4∴16的算術(shù)平方根為417、k≥-1【解題分析】試題解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考點:根的判別式.18、90°【解題分析】
連接OE,根據(jù)圓周角定理即可求出答案.【題目詳解】解:連接OE,
根據(jù)圓周角定理可知:
∠C=∠AOE,∠D=∠BOE,
則∠C+∠D=(∠AOE+∠BOE)=90°,
故答案為:90°.【題目點撥】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、公路的寬為20.5米.【解題分析】
作CD⊥AE,設(shè)CD=x米,由∠CBD=45°知BD=CD=x,根據(jù)tan∠CAD=,可得=,解之即可.【題目詳解】解:如圖,過點C作CD⊥AE于點D,設(shè)公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【題目點撥】本題考查了直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.20、(1)25;(2)8°48′;(3)56【解題分析】試題分析:(1)由C等級頻數(shù)為15除以C等級所占的百分比60%,即可求得m的值;(2)首先求得B等級的頻數(shù),繼而求得B等級所在扇形的圓心角的大??;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與其中至少有一家是A等級的情況,再利用概率公式求解即可求得答案.試題解析:(1)∵C等級頻數(shù)為15,占60%,∴m=15÷60%=25;(2)∵B等級頻數(shù)為:25﹣2﹣15﹣6=2,∴B等級所在扇形的圓心角的大小為:225(3)評估成績不少于80分的連鎖店中,有兩家等級為A,有兩家等級為B,畫樹狀圖得:∵共有12種等可能的結(jié)果,其中至少有一家是A等級的有10種情況,∴其中至少有一家是A等級的概率為:1012=5考點:頻數(shù)(率)分布表;扇形統(tǒng)計圖;列表法與樹狀圖法.21、(1)圖形見解析,216件;(2)【解題分析】
(1)由B班級的作品數(shù)量及其占總數(shù)量的比例可得4個班作品總數(shù),再求得D班級的數(shù)量,可補全條形圖,再用36乘四個班的平均數(shù)即估計全校的作品數(shù);
(2)列表得出所有等可能結(jié)果,從中找到一男、一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【題目詳解】(1)4個班作品總數(shù)為:件,所以D班級作品數(shù)量為:36-6-12-10=8;∴估計全校共征集作品×36=324件.
條形圖如圖所示,
(2)男生有3名,分別記為A1,A2,A3,女生記為B,
列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12種等可能情況,其中選取的兩名學(xué)生恰好是一男一女的有6種.
所以選取的兩名學(xué)生恰好是一男一女的概率為.【題目點撥】考查了列表法或樹狀圖法求概率以及扇形與條形統(tǒng)計圖的知識.注意掌握扇形統(tǒng)計圖與條形統(tǒng)計圖的對應(yīng)關(guān)系.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)11~30;(1)31~40歲年齡段的滿意人數(shù)為66人,圖見解析;【解題分析】
(1)取扇形統(tǒng)計圖中所占百分比最大的年齡段即可;(1)先求出總體感到滿意的總?cè)藬?shù),然后減去其它年齡段的人數(shù)即可,再補全條形圖.【題目詳解】(1)由扇形統(tǒng)計圖可得11~30歲的人數(shù)所占百分比最大為39%,所以,人數(shù)最多的年齡段是11~30歲;(1)根據(jù)題意,被調(diào)查的人中,總體印象感到滿意的有:400×83%=331人,31~40歲年齡段的滿意人數(shù)為:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,補全統(tǒng)計圖如圖.【題目點撥】本題考點:條形統(tǒng)計圖與扇形統(tǒng)計圖.23、解:(1);(2)存在,P(,);(1)Q點坐標(biāo)為(0,-)或(0,)或(0,-1)或(0,-1).【解題分析】
(1)已知點A坐標(biāo)可確定直線AB的解析式,進(jìn)一步能求出點B的坐標(biāo).點A是拋物線的頂點,那么可以將拋物線的解析式設(shè)為頂點式,再代入點B的坐標(biāo),依據(jù)待定系數(shù)法可解.(2)首先由拋物線的解析式求出點C的坐標(biāo),在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構(gòu)成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發(fā)現(xiàn),點P正好在第二象限的角平分線上,聯(lián)立直線y=-x與拋物線的解析式,直接求交點坐標(biāo)即可,同時還要注意點P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點,分類進(jìn)行討論,找出相關(guān)的相似三角形,依據(jù)對應(yīng)線段成比例進(jìn)行求解即可.【題目詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標(biāo)是(1,0).∵A為頂點,∴設(shè)拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當(dāng)∠POB=∠POC時,△POB≌△POC,此時PO平分第二象限,即PO的解析式為y=﹣x.設(shè)P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當(dāng)∠Q1AB=90°時,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當(dāng)∠Q2BA=90°時,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當(dāng)∠AQ1B=90°時,作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點坐標(biāo)為(0,-)或(0,)或(0,﹣1)或(0,﹣1).24、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是【解題分析】
(1)把x=y=m,a=1,b=1代入函數(shù)解析式,列出方程,通過解方程求得m的值即可;(1)拋物線上恒有兩個不同的“和諧點”A、B.則關(guān)于m的方程m=am1+(3b+1)m+b-3的根的判別式△=9b1-4ab+11a.①令y=9b1-4ab+11a,對于任意實數(shù)b,均有y>2,所以根據(jù)二次函數(shù)y=9b1-4ab+11的圖象性質(zhì)解答;②利用二次函數(shù)圖象的對稱性質(zhì)解答即可.【題目詳解】(1)當(dāng)a=1,b=1時,m=1m1+4m+1﹣4,解得m=或m=﹣1.所以點P的坐標(biāo)是(,)或(﹣1,﹣1);(1)m=am1+(3b+1)m+b﹣3,△=9b1﹣4ab+11a.①令y=9b1﹣4ab+11a,對于任意實數(shù)b,均有y>2,也就是說拋物線y=9b1﹣4ab+11的圖象都在b軸(橫軸)上方.∴△=(﹣4a)1﹣4×9×11a<2.∴2<a<17.②由“和諧點”定義可設(shè)A(x1,y1),B(x1,y1),則x1,x1是ax1+(3b+1)x+b﹣3=2的兩不等實根,.∴線段AB的中點坐標(biāo)是:(﹣,﹣).代入對稱軸y=x﹣(+1),得﹣=﹣(+1),∴3b+1=+a.∵a>2,>2,a?=1為定值,∴3b+1=+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度廁所環(huán)保材料生產(chǎn)與銷售合同2篇
- 2025年度輪胎行業(yè)新能源汽車配套服務(wù)合同4篇
- 2025年度海洋工程裝備采購及租賃服務(wù)合同2篇
- 2025年度教育培訓(xùn)機構(gòu)場地租賃及課程研發(fā)服務(wù)合同3篇
- 2024物業(yè)公司環(huán)保措施合同
- 2025年度林地林木資源調(diào)查與監(jiān)測合同3篇
- 二零二五年房地產(chǎn)面積測繪與銷售備案合同范本3篇
- 2025年度二零二五年度奇幻馬戲團(tuán)國際巡演合作合同4篇
- 2025年度餐飲廚師個人技能保密及競業(yè)限制合同3篇
- 二零二五版船舶建造質(zhì)量檢測與驗收合同3篇
- 拆遷評估機構(gòu)選定方案
- 床旁超聲監(jiān)測胃殘余量
- 上海市松江區(qū)市級名校2025屆數(shù)學(xué)高一上期末達(dá)標(biāo)檢測試題含解析
- 綜合實踐活動教案三上
- 《新能源汽車電氣設(shè)備構(gòu)造與維修》項目三 新能源汽車照明與信號系統(tǒng)檢修
- 2024年新課標(biāo)《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》測試題(附含答案)
- 醫(yī)院培訓(xùn)課件:《靜脈中等長度導(dǎo)管臨床應(yīng)用專家共識》
- 趣味知識問答100道
- 中國國際大學(xué)生創(chuàng)新大賽與“挑戰(zhàn)杯”大學(xué)生創(chuàng)業(yè)計劃競賽(第十一章)大學(xué)生創(chuàng)新創(chuàng)業(yè)教程
- 鋼管豎向承載力表
- 2024年新北師大版八年級上冊物理全冊教學(xué)課件(新版教材)
評論
0/150
提交評論