重慶市巴川中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁(yè)
重慶市巴川中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁(yè)
重慶市巴川中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁(yè)
重慶市巴川中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁(yè)
重慶市巴川中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市巴川中學(xué)2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.3點(diǎn)40分,時(shí)鐘的時(shí)針與分針的夾角為()A.140° B.130° C.120° D.110°2.﹣22×3的結(jié)果是()A.﹣5 B.﹣12 C.﹣6 D.123.下面運(yùn)算結(jié)果為的是A. B. C. D.4.如圖,與∠1是內(nèi)錯(cuò)角的是()A.∠2B.∠3C.∠4D.∠55.已知在四邊形ABCD中,AD//BC,對(duì)角線AC、BD交于點(diǎn)O,且AC=BD,下列四個(gè)命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.6.已知a為整數(shù),且<a<,則a等于A.1 B.2 C.3 D.47.如圖,已知正方形ABCD的邊長(zhǎng)為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①≌;②;③∠GDE=45°;④DG=DE在以上4個(gè)結(jié)論中,正確的共有()個(gè)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8.已知一次函數(shù)y=(k﹣2)x+k不經(jīng)過(guò)第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<29.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.10.如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.二、填空題(共7小題,每小題3分,滿分21分)11.為增強(qiáng)學(xué)生身體素質(zhì),提高學(xué)生足球運(yùn)動(dòng)競(jìng)技水平,我市開(kāi)展“市長(zhǎng)杯”足球比賽,賽制為單循環(huán)形式(每?jī)申?duì)之間賽一場(chǎng)).現(xiàn)計(jì)劃安排21場(chǎng)比賽,應(yīng)邀請(qǐng)多少個(gè)球隊(duì)參賽?設(shè)邀請(qǐng)x個(gè)球隊(duì)參賽,根據(jù)題意,可列方程為_(kāi)____.12.方程的根是__________.13.如圖,AC是以AB為直徑的⊙O的弦,點(diǎn)D是⊙O上的一點(diǎn),過(guò)點(diǎn)D作⊙O的切線交直線AC于點(diǎn)E,AD平分∠BAE,若AB=10,DE=3,則AE的長(zhǎng)為_(kāi)____.14.計(jì)算tan260°﹣2sin30°﹣cos45°的結(jié)果為_(kāi)____.15.內(nèi)接于圓,設(shè),圓的半徑為,則所對(duì)的劣弧長(zhǎng)為_(kāi)____(用含的代數(shù)式表示).16.如圖,BD是⊙O的直徑,BA是⊙O的弦,過(guò)點(diǎn)A的切線交BD延長(zhǎng)線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長(zhǎng)為_(kāi)____.17.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點(diǎn),則下列結(jié)論正確的有_____.①M(fèi)N=BM+DN②△CMN的周長(zhǎng)等于正方形ABCD的邊長(zhǎng)的兩倍;③EF1=BE1+DF1;④點(diǎn)A到MN的距離等于正方形的邊長(zhǎng)⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過(guò)計(jì)算,判斷AD2與AC?CD的大小關(guān)系;(2)求∠ABD的度數(shù).19.(5分)如圖,B、E、C、F在同一直線上,AB=DE,BE=CF,∠B=∠DEF,求證:AC=DF.20.(8分)某新建火車(chē)站站前廣場(chǎng)需要綠化的面積為46000米2,施工隊(duì)在綠化了22000米2后,將每天的工作量增加為原來(lái)的1.5倍,結(jié)果提前4天完成了該項(xiàng)綠化工程.該項(xiàng)綠化工程原計(jì)劃每天完成多少米2?該項(xiàng)綠化工程中有一塊長(zhǎng)為20米,寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問(wèn)人行通道的寬度是多少米?21.(10分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點(diǎn)E處有一棵盛開(kāi)的桃花的小桃樹(shù),他想利用平面鏡測(cè)量的方式計(jì)算一下小桃樹(shù)到山腳下的距離,即DE的長(zhǎng)度,小華站在點(diǎn)B的位置,讓同伴移動(dòng)平面鏡至點(diǎn)C處,此時(shí)小華在平面鏡內(nèi)可以看到點(diǎn)E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請(qǐng)你利用以上的數(shù)據(jù)求出DE的長(zhǎng)度.(結(jié)果保留根號(hào))22.(10分)定義:如果把一條拋物線繞它的頂點(diǎn)旋轉(zhuǎn)180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達(dá)式;(2)若拋物線y=x2﹣2x+c的頂點(diǎn)為D,與y軸交于點(diǎn)C,其“孿生拋物線”與y軸交于點(diǎn)C′,請(qǐng)判斷△DCC’的形狀,并說(shuō)明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點(diǎn)C,與x軸正半軸的交點(diǎn)為A,那么是否在其“孿生拋物線”上存在點(diǎn)P,在y軸上存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.23.(12分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,且BF是⊙O的切線,BF交AC的延長(zhǎng)線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長(zhǎng).24.(14分)為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚(yú)苗到A、B兩村養(yǎng)殖,若用大小貨車(chē)共15輛,則恰好能一次性運(yùn)完這批魚(yú)苗,已知這兩種大小貨車(chē)的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:車(chē)型目的地A村(元/輛)B村(元/輛)大貨車(chē)800900小貨車(chē)400600(1)求這15輛車(chē)中大小貨車(chē)各多少輛?(2)現(xiàn)安排其中10輛貨車(chē)前往A村,其余貨車(chē)前往B村,設(shè)前往A村的大貨車(chē)為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運(yùn)往A村的魚(yú)苗不少于100箱,請(qǐng)你寫(xiě)出使總費(fèi)用最少的貨車(chē)調(diào)配方案,并求出最少費(fèi)用.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解題分析】

根據(jù)時(shí)針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【題目詳解】解:3點(diǎn)40分時(shí)針與分針相距4+=份,30°×=130,故選B.【題目點(diǎn)撥】本題考查了鐘面角,確定時(shí)針與分針相距的份數(shù)是解題關(guān)鍵.2、B【解題分析】

先算乘方,再算乘法即可.【題目詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【題目點(diǎn)撥】本題主要考查了有理數(shù)的混合運(yùn)算,熟練掌握法則是解答本題的關(guān)鍵.有理數(shù)的混合運(yùn)算,先乘方,再乘除,后加減,有括號(hào)的先算括號(hào)內(nèi)的.3、B【解題分析】

根據(jù)合并同類項(xiàng)法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計(jì)算即可判斷.【題目詳解】.,此選項(xiàng)不符合題意;.,此選項(xiàng)符合題意;.,此選項(xiàng)不符合題意;.,此選項(xiàng)不符合題意;故選:.【題目點(diǎn)撥】本題考查了整式的運(yùn)算,解題的關(guān)鍵是掌握合并同類項(xiàng)法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.4、B【解題分析】由內(nèi)錯(cuò)角定義選B.5、C【解題分析】A、因?yàn)闈M足本選項(xiàng)條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因?yàn)闈M足本選項(xiàng)條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因?yàn)橛山Y(jié)合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時(shí)四邊形ABCD是矩形,因此C中命題一定成立;D、因?yàn)闈M足本選項(xiàng)條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.6、B【解題分析】

直接利用,接近的整數(shù)是1,進(jìn)而得出答案.【題目詳解】∵a為整數(shù),且<a<,∴a=1.故選:.【題目點(diǎn)撥】考查了估算無(wú)理數(shù)大小,正確得出無(wú)理數(shù)接近的有理數(shù)是解題關(guān)鍵.7、C【解題分析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過(guò)勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯(cuò)誤的.【題目詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯(cuò)誤;∴正確說(shuō)法是①②③故選:C【題目點(diǎn)撥】本題綜合性較強(qiáng),考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,有一定的難度.8、D【解題分析】

直線不經(jīng)過(guò)第三象限,則經(jīng)過(guò)第二、四象限或第一、二、四象限,當(dāng)經(jīng)過(guò)第二、四象限時(shí),函數(shù)為正比例函數(shù),k=0當(dāng)經(jīng)過(guò)第一、二、四象限時(shí),,解得0<k<2,綜上所述,0≤k<2。故選D9、D【解題分析】

連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長(zhǎng)度,最后勾股定理即可求出CE的長(zhǎng)度.利用銳角三角函數(shù)的定義即可求出答案.【題目詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【題目點(diǎn)撥】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識(shí),綜合程度較高,屬于中等題型.10、C【解題分析】∵AEAB∴△ABC∽△AED?!郤Δ∴SΔ二、填空題(共7小題,每小題3分,滿分21分)11、x(x﹣1)=1【解題分析】【分析】賽制為單循環(huán)形式(每?jī)申?duì)之間都賽一場(chǎng)),x個(gè)球隊(duì)比賽總場(chǎng)數(shù)為x(x﹣1),即可列方程.【題目詳解】有x個(gè)隊(duì),每個(gè)隊(duì)都要賽(x﹣1)場(chǎng),但兩隊(duì)之間只有一場(chǎng)比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【題目點(diǎn)撥】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.12、1.【解題分析】

把無(wú)理方程轉(zhuǎn)化為整式方程即可解決問(wèn)題.【題目詳解】?jī)蛇吰椒降玫剑?x﹣1=1,解得:x=1,經(jīng)檢驗(yàn):x=1是原方程的解.故答案為:1.【題目點(diǎn)撥】本題考查了無(wú)理方程,解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,注意必須檢驗(yàn).13、1或9【解題分析】(1)點(diǎn)E在AC的延長(zhǎng)線上時(shí),過(guò)點(diǎn)O作OFAC交AC于點(diǎn)F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當(dāng)點(diǎn)E在CA的線上時(shí),過(guò)點(diǎn)O作OFAC交AC于點(diǎn)F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.14、1【解題分析】

分別算三角函數(shù),再化簡(jiǎn)即可.【題目詳解】解:原式=-2×-×=1.【題目點(diǎn)撥】本題考查掌握簡(jiǎn)單三角函數(shù)值,較基礎(chǔ).15、或【解題分析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長(zhǎng)公式計(jì)算即可.【題目詳解】解:當(dāng)0°<x°≤90°時(shí),如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對(duì)的劣弧長(zhǎng)=,

當(dāng)90°<x°≤180°時(shí),同理可得,∠OBC所對(duì)的劣弧長(zhǎng)=.

故答案為:或.【題目點(diǎn)撥】本題考查了三角形的外接圓與外心、弧長(zhǎng)的計(jì)算,掌握弧長(zhǎng)公式、圓周角定理是解題的關(guān)鍵.16、【解題分析】

連接OA,所以∠OAC=90°,因?yàn)锳B=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【題目詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【題目點(diǎn)撥】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運(yùn)用,解本題的要點(diǎn)在于求出OA的值,從而利用直角三角形的三角函數(shù)的運(yùn)用求出答案.17、①②③④⑤⑥⑦.【解題分析】

將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長(zhǎng)公式計(jì)算判斷①;判斷出BM=DN時(shí),MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點(diǎn)A順時(shí)針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計(jì)算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計(jì)算,判斷⑥,根據(jù)點(diǎn)A到MN的距離等于正方形ABCD的邊長(zhǎng)、三角形的面積公式計(jì)算,判斷⑦.【題目詳解】將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時(shí),取等號(hào))∴BM=DN時(shí),MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點(diǎn)G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點(diǎn)M和點(diǎn)B重合時(shí),點(diǎn)N和點(diǎn)C重合,此時(shí),MN最大=AB,即:,∴≤≤1,⑧錯(cuò)誤;∵M(jìn)N=NH=BM+DN∴△CMN的周長(zhǎng)=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長(zhǎng)等于正方形ABCD的邊長(zhǎng)的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點(diǎn)A到MN的距離等于正方形ABCD的邊長(zhǎng)AD,④結(jié)論正確;如圖1,將△ADF繞點(diǎn)A順時(shí)針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點(diǎn)共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過(guò)點(diǎn)M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點(diǎn)A到MN的距離等于正方形ABCD的邊長(zhǎng),∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【題目點(diǎn)撥】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.三、解答題(共7小題,滿分69分)18、(1)AD2=AC?CD.(2)36°.【解題分析】試題分析:(1)通過(guò)計(jì)算得到AD2=(2)由AD2=AC?CD,得到BC2設(shè)∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設(shè)∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點(diǎn):相似三角形的判定與性質(zhì).19、見(jiàn)解析【解題分析】

由BE=CF可得BC=EF,即可判定,再利用全等三角形的性質(zhì)證明即可.【題目詳解】∵BE=CF,∴,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在與中,,∴,∴AC=DF.【題目點(diǎn)撥】本題主要考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解決本題的關(guān)鍵.20、(1)2000;(2)2米【解題分析】

(1)設(shè)未知數(shù),根據(jù)題目中的的量關(guān)系列出方程;(2)可以通過(guò)平移,也可以通過(guò)面積法,列出方程【題目詳解】解:(1)設(shè)該項(xiàng)綠化工程原計(jì)劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗(yàn),x=2000是原方程的解;答:該綠化項(xiàng)目原計(jì)劃每天完成2000平方米;(2)設(shè)人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.21、DE的長(zhǎng)度為6+1.【解題分析】

根據(jù)相似三角形的判定與性質(zhì)解答即可.【題目詳解】解:過(guò)E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設(shè)EF為x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的長(zhǎng)度為6+1.【題目點(diǎn)撥】本題考查相似三角形性質(zhì)的應(yīng)用,解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來(lái)解決問(wèn)題.22、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解題分析】

(1)當(dāng)拋物線繞其頂點(diǎn)旋轉(zhuǎn)180°后,拋物線的頂點(diǎn)坐標(biāo)不變,只是開(kāi)口方向相反,則可根據(jù)頂點(diǎn)式寫(xiě)出旋轉(zhuǎn)后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點(diǎn)坐標(biāo)C、C′,由點(diǎn)的坐標(biāo)可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當(dāng)AC為對(duì)角線時(shí),由中點(diǎn)坐標(biāo)可知點(diǎn)P不存在,當(dāng)AC為邊時(shí),分兩種情況可求得點(diǎn)P的坐標(biāo).【題目詳解】(1)拋物線y=x2-2x化為頂點(diǎn)式為y=(x-1)2-1,頂點(diǎn)坐標(biāo)為(1,-1),由于拋物線y=x2-2x繞其頂點(diǎn)旋轉(zhuǎn)180°后拋物線的頂點(diǎn)坐標(biāo)不變,只是開(kāi)口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點(diǎn)為D的坐標(biāo)為(1,c-1),與y軸的交點(diǎn)C的坐標(biāo)為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點(diǎn)C’的坐標(biāo)為(0,c-2),∴CC'=c-(c-2)=2,∵點(diǎn)D的橫坐標(biāo)為1,∴∠CDC'=90°,由對(duì)稱性質(zhì)可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點(diǎn)C,與x軸正半軸的交點(diǎn)為A,令x=0,y=-3,令y=0時(shí),y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對(duì)角線,∴其中點(diǎn)坐標(biāo)為(,?),設(shè)P(a,-a2+2a-5),∵A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡(jiǎn)得,a2+3a+5=0,△<0,方程無(wú)實(shí)數(shù)解,∴此時(shí)滿足條件的點(diǎn)P不存在,若AC為平行四邊形的邊,點(diǎn)P在y軸右側(cè),則AP∥CQ且AP=CQ,∵點(diǎn)C和點(diǎn)Q在y軸上,∴點(diǎn)P的橫坐標(biāo)為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點(diǎn)P在y軸左側(cè),則AQ∥CP且AQ=CP,∴點(diǎn)P的橫坐標(biāo)為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點(diǎn)P1(3,-8),P2(-3,-20),在y軸上存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形.【題目點(diǎn)撥】本題是二次函數(shù)綜合題型,主此題主要考查了根據(jù)二次函數(shù)的圖象的變換求拋物線的解析式,解題的關(guān)鍵是求出旋轉(zhuǎn)后拋物線的頂點(diǎn)坐標(biāo)以及確定出點(diǎn)P的位置,注意分情況討論.23、(1)證明略;(2)BC=,BF=.【解題分析】試題分析:(1)連結(jié)AE.有AB是⊙O的直徑可得∠AEB=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論