2024屆河南省三門峽市義馬二中達標名校中考數(shù)學押題卷含解析_第1頁
2024屆河南省三門峽市義馬二中達標名校中考數(shù)學押題卷含解析_第2頁
2024屆河南省三門峽市義馬二中達標名校中考數(shù)學押題卷含解析_第3頁
2024屆河南省三門峽市義馬二中達標名校中考數(shù)學押題卷含解析_第4頁
2024屆河南省三門峽市義馬二中達標名校中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省三門峽市義馬二中達標名校中考數(shù)學押題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數(shù)不可能是()A.16 B.17 C.18 D.192.已知二次函數(shù)y=a(x﹣2)2+c,當x=x1時,函數(shù)值為y1;當x=x2時,函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>03.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.4.我國古代數(shù)學著作《孫子算經》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設車輛,根據(jù)題意,可列出的方程是().A. B.C. D.5.已知二次函數(shù)y=(x+a)(x﹣a﹣1),點P(x0,m),點Q(1,n)都在該函數(shù)圖象上,若m<n,則x0的取值范圍是()A.0≤x0≤1 B.0<x0<1且x0≠C.x0<0或x0>1 D.0<x0<16.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.有一種球狀細菌的直徑用科學記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米8.一個幾何體的三視圖如圖所示,根據(jù)圖示的數(shù)據(jù)計算出該幾何體的表面積()A.65π B.90π C.25π D.85π9.甲乙兩同學均從同一本書的第一頁開始,按照順序逐頁依次在每頁上寫一個數(shù),甲同學在第1頁寫1,第2頁寫3,第3頁寫1,……,每一頁寫的數(shù)均比前一頁寫的數(shù)多2;乙同學在第1頁寫1,第2頁寫6,第3頁寫11,……,每一頁寫的數(shù)均比前一頁寫的數(shù)多1.若甲同學在某一頁寫的數(shù)為49,則乙同學在這一頁寫的數(shù)為()A.116 B.120 C.121 D.12610.一個容量為50的樣本,在整理頻率分布時,將所有頻率相加,其和是()A.50B.0.02C.0.1D.1二、填空題(共7小題,每小題3分,滿分21分)11.不等式2x-5<7-(x-5)的解集是______________.12.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.13.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標為,線段的長為8,則拋物線的對稱軸為直線________________.14.如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______15.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點F,連接DF.圖中有全等三角形_____對,有面積相等但不全等的三角形_____對.16.已知一個正六邊形的邊心距為,則它的半徑為______.17.在一次射擊比賽中,某運動員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出_____環(huán)的成績.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.求證:CG是⊙O的切線.求證:AF=CF.若sinG=0.6,CF=4,求GA的長.19.(5分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.20.(8分)計算:×(2﹣)﹣÷+.21.(10分)如圖,某中學數(shù)學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.22.(10分)已知:如圖,AB=AE,∠1=∠2,∠B=∠E.求證:BC=ED.23.(12分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.24.(14分)小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【題目點撥】此題主要考查了多邊形,減去一個角的方法可能有三種:經過兩個相鄰點,則少了一條邊;經過一個頂點和一邊,邊數(shù)不變;經過兩條鄰邊,邊數(shù)增加一條.2、C【解題分析】

分a>1和a<1兩種情況根據(jù)二次函數(shù)的對稱性確定出y1與y2的大小關系,然后對各選項分析判斷即可得解.【題目詳解】解:①a>1時,二次函數(shù)圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,②a<1時,二次函數(shù)圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無法確定y1+y2的正負情況,a(y1﹣y2)>1,綜上所述,表達式正確的是a(y1﹣y2)>1.故選:C.【題目點撥】本題主要考查二次函數(shù)的性質,利用了二次函數(shù)的對稱性,關鍵要掌握根據(jù)二次項系數(shù)a的正負分情況討論.3、D【解題分析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關鍵.4、B【解題分析】

根據(jù)題意,表示出兩種方式的總人數(shù),然后根據(jù)人數(shù)不變列方程即可.【題目詳解】根據(jù)題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【題目點撥】此題主要考查了一元一次方程的應用,關鍵是找到問題中的等量關系:總人數(shù)不變,列出相應的方程即可.5、D【解題分析】分析:先求出二次函數(shù)的對稱軸,然后再分兩種情況討論,即可解答.詳解:二次函數(shù)y=(x+a)(x﹣a﹣1),當y=0時,x1=﹣a,x2=a+1,∴對稱軸為:x==當P在對稱軸的左側(含頂點)時,y隨x的增大而減小,由m<n,得:0<x0≤;當P在對稱軸的右側時,y隨x的增大而增大,由m<n,得:<x0<1.綜上所述:m<n,所求x0的取值范圍0<x0<1.故選D.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,解決本題的關鍵是利用二次函數(shù)的性質,要分類討論,以防遺漏.6、D【解題分析】

求得頂點坐標,得出頂點的橫坐標和縱坐標的關系式,即可求得.【題目詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標為:x=﹣=﹣a﹣,縱坐標為:y==﹣2a﹣,∴拋物線的頂點橫坐標和縱坐標的關系式為:y=2x+,∴拋物線的頂點經過一二三象限,不經過第四象限,故選:D.【題目點撥】本題考查了二次函數(shù)的性質,得到頂點的橫縱坐標的關系式是解題的關鍵.7、B【解題分析】

絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】2.16×10﹣3米=0.00216米.故選B.【題目點撥】考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.8、B【解題分析】

根據(jù)三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計算出母線長,然后求底面積與側面積的和即可.【題目詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【題目點撥】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了三視圖.9、C【解題分析】

根據(jù)題意確定出甲乙兩同學所寫的數(shù)字,設甲所寫的第n個數(shù)為49,根據(jù)規(guī)律確定出n的值,即可確定出乙在該頁寫的數(shù).【題目詳解】甲所寫的數(shù)為1,3,1,7,…,49,…;乙所寫的數(shù)為1,6,11,16,…,設甲所寫的第n個數(shù)為49,根據(jù)題意得:49=1+(n﹣1)×2,整理得:2(n﹣1)=48,即n﹣1=24,解得:n=21,則乙所寫的第21個數(shù)為1+(21﹣1)×1=1+24×1=121,故選:C.【題目點撥】考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關鍵.10、D【解題分析】所有小組頻數(shù)之和等于數(shù)據(jù)總數(shù),所有頻率相加等于1.二、填空題(共7小題,每小題3分,滿分21分)11、x<【解題分析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.12、25°【解題分析】

連接BC,BD,根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,根據(jù)同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數(shù).【題目詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【題目點撥】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.13、或x=-1【解題分析】

由點A的坐標及AB的長度可得出點B的坐標,由拋物線的對稱性可求出拋物線的對稱軸.【題目詳解】∵點A的坐標為(-2,0),線段AB的長為8,∴點B的坐標為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【題目點撥】本題考查了拋物線與x軸的交點以及二次函數(shù)的性質,由拋物線與x軸的交點坐標找出拋物線的對稱軸是解題的關鍵.14、;答案見解析.【解題分析】

(1)AB==.故答案為.(2)如圖AC與網格相交,得到點D、E,取格點F,連接FB并且延長,與網格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.15、11【解題分析】

根據(jù)長方形的對邊相等,每一個角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【題目詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【題目點撥】本題考查了全等三角形的判定,長方形的性質,以及等底等高的三角形的面積相等.16、2【解題分析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.17、8【解題分析】為了使第8次的環(huán)數(shù)最少,可使后面的2次射擊都達到最高環(huán)數(shù),即10環(huán).設第8次射擊環(huán)數(shù)為x環(huán),根據(jù)題意列出一元一次不等式62+x+2×10>89解之,得x>7x表示環(huán)數(shù),故x為正整數(shù)且x>7,則x的最小值為8即第8次至少應打8環(huán).點睛:本題考查的是一元一次不等式的應用.解決此類問題的關鍵是在理解題意的基礎上,建立與之相應的解決問題的“數(shù)學模型”——不等式,再由不等式的相關知識確定問題的答案.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析;(3)AG=1.【解題分析】

(1)利用垂徑定理、平行的性質,得出OC⊥CG,得證CG是⊙O的切線.(2)利用直徑所對圓周角為和垂直的條件得出∠2=∠B,再根據(jù)等弧所對的圓周角相等得出∠1=∠B,進而證得∠1=∠2,得證AF=CF.(3)根據(jù)直角三角形的性質,求出AD的長度,再利用平行的性質計算出結果.【題目詳解】(1)證明:連結OC,如圖,∵C是劣弧AE的中點,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切線;(2)證明:連結AC、BC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中點,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【題目點撥】本題主要考查與圓有關的位置關系和圓中的計算問題,掌握切線的判定定理以及解直角三角形是解題的關鍵.19、(1)相切,理由見解析;(1)1.【解題分析】

(1)求出OD//AC,得到OD⊥BC,根據(jù)切線的判定得出即可;(1)根據(jù)勾股定理得出方程,求出方程的解即可.【題目詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【題目點撥】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.20、5-【解題分析】分析:先化簡各二次根式,再根據(jù)混合運算順序依次計算可得.詳解:原式=3×(2-)-+=6--+=5-點睛:本題考查了二次根式的混合運算,熟練掌握混合運算的法則是解題的關鍵.21、(1)12m;(2)【解題分析】

(1)利用即可求解;(2)通過三角形外角的性質得出,則,設,則,在中利用勾股定理即可求出BC,BD的長度,最后利用即可求解.【題目詳解】解:(1)在中,,答:教學樓的高度為;(2)設,則,故,解得:,則故.【題目點撥】本題主要考查解直角三角形,掌握勾股定理及正切,余弦的定義是解題的關鍵.22、證明見解析.【解題分析】

由∠1=∠2可得∠CAB=∠DAE,再根據(jù)ASA證明△ABC≌△AED,即可得出答案.【題目詳解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC與△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.23、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解題分析】

(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【題目詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論