2024屆山東省青島市集團校中考數(shù)學四模試卷含解析_第1頁
2024屆山東省青島市集團校中考數(shù)學四模試卷含解析_第2頁
2024屆山東省青島市集團校中考數(shù)學四模試卷含解析_第3頁
2024屆山東省青島市集團校中考數(shù)學四模試卷含解析_第4頁
2024屆山東省青島市集團校中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省青島市集團校中考數(shù)學四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在中,,,,則的值是()A. B. C. D.2.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米3.不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.4.下列解方程去分母正確的是()A.由x3B.由x-22C.由y3D.由y+125.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.6.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.7.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元8.下列運算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=99.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.610.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°11.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.12.若一次函數(shù)的圖象經(jīng)過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線y=mx2+2mx+5的對稱軸是直線_____.14.一個圓的半徑為2,弦長是2,求這條弦所對的圓周角是_____.15.有一個計算程序,每次運算都是把一個數(shù)先乘2,再除以它與1的和,多次重復進行這種運算的過程如下:則第n次的運算結果是____________(用含字母x和n的代數(shù)式表示).16.因式分解:=17.分解因式:3x2-6x+3=__.18.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應的圓心角的度數(shù)為______;請補全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.20.(6分)隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識的普及情況,隨機調(diào)查了部分學生,調(diào)查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結果繪制成下面兩個統(tǒng)計圖.(1)本次調(diào)查的學生共有人,估計該校1200名學生中“不了解”的人數(shù)是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.21.(6分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.22.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.23.(8分)在平面直角坐標系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.24.(10分)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結DF.設點P的橫坐標為m.(1)求此拋物線所對應的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當四邊形PEDF為平行四邊形時,求m的值.25.(10分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)26.(12分)填空并解答:某單位開設了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.27.(12分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.(1)將上面的條形統(tǒng)計圖補充完整;(2)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學生有多少名?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【題目詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【題目點撥】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉化成直角三角形的邊長的比.2、D【解題分析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數(shù)科學計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).3、C【解題分析】

分別求出每一個不等式的解集,根據(jù)口訣:大小小大中間找確定不等式組的解集,在數(shù)軸上表示時由包括該數(shù)用實心點、不包括該數(shù)用空心點判斷即可.【題目詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【題目點撥】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.4、D【解題分析】

根據(jù)等式的性質(zhì)2,A方程的兩邊都乘以6,B方程的兩邊都乘以4,C方程的兩邊都乘以15,D方程的兩邊都乘以6,去分母后判斷即可.【題目詳解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故選D.【題目點撥】本題考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數(shù)時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.5、A【解題分析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【題目詳解】點P在拋物線上,設點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.6、C【解題分析】

如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【題目詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【題目點撥】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,學會利用參數(shù)解決問題,屬于中考常考題型.7、C【解題分析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【題目詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【題目點撥】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.8、D【解題分析】

直接利用合并同類項法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【題目詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【題目點撥】此題主要考查了合并同類項以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關性質(zhì)是解題關鍵.9、C【解題分析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).10、A【解題分析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關鍵.11、C【解題分析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【題目點撥】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.12、D【解題分析】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x=﹣1【解題分析】

根據(jù)拋物線的對稱軸公式可直接得出.【題目詳解】解:這里a=m,b=2m∴對稱軸x=故答案為:x=-1.【題目點撥】解答本題關鍵是識記拋物線的對稱軸公式x=.14、60°或120°【解題分析】

首先根據(jù)題意畫出圖形,過點O作OD⊥AB于點D,通過垂徑定理,即可推出∠AOD的度數(shù),求得∠AOB的度數(shù),然后根據(jù)圓周角定理,即可推出∠AMB和∠ANB的度數(shù).【題目詳解】解:如圖:連接OA,過點O作OD⊥AB于點D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案為:或.【題目點撥】本題主要考查垂徑定理與圓周角定理,注意弦所對的圓周角有兩個,他們互為補角.15、【解題分析】試題分析:根據(jù)題意得;;;根據(jù)以上規(guī)律可得:=.考點:規(guī)律題.16、﹣3(x﹣y)1【解題分析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進行二次分解,注意分解要徹底.17、3(x-1)2【解題分析】

先提取公因式3,再對余下的多項式利用完全平方公式繼續(xù)分解.【題目詳解】.故答案是:3(x-1)2.【題目點撥】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.18、1【解題分析】解:原式==xy+2x+2y,方程組:,解得:,當x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)144°;(2)補圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解題分析】

試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經(jīng)常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;補全統(tǒng)計圖如圖所示;(3)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù)約為:1200×=160人;(4)這個說法不正確.理由如下:小明得到的108人是經(jīng)常參加課外體育鍛煉的男生中最喜歡的項目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會有最喜歡乒乓球的,因此應多于108人.考點:①條形統(tǒng)計圖;②扇形統(tǒng)計圖.20、(1)50,360;(2).【解題分析】試題分析:(1)根據(jù)圖示,可由非常了解的人數(shù)和所占的百分比直接求解總人數(shù),然后根據(jù)求出不了解的百分比估計即可;(2)根據(jù)題意畫出樹狀圖,然后求出總可能和“一男一女”的可能,再根據(jù)概率的意義求解即可.試題解析:(1)由餅圖可知“非常了解”為8%,由柱形圖可知(條形圖中可知)“非常了解”為4人,故本次調(diào)查的學生有(人)由餅圖可知:“不了解”的概率為,故1200名學生中“不了解”的人數(shù)為(人)(2)樹狀圖:由樹狀圖可知共有12種結果,抽到1男1女分別為共8種.∴考點:1、扇形統(tǒng)計圖,2、條形統(tǒng)計圖,3、概率21、(1)200;(2)72°,作圖見解析;(3).【解題分析】

(1)用一等獎的人數(shù)除以所占的百分比求出總人數(shù);(2)用總人數(shù)乘以二等獎的人數(shù)所占的百分比求出二等獎的人數(shù),補全統(tǒng)計圖,再用360°乘以二等獎的人數(shù)所占的百分比即可求出“二等獎”對應的扇形圓心角度數(shù);(3)用獲得一等獎和二等獎的人數(shù)除以總人數(shù)即可得出答案.【題目詳解】解:(1)這次知識競賽共有學生=200(名);(2)二等獎的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補圖如下:“二等獎”對應的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【題目點撥】本題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖,利用統(tǒng)計圖獲取信息是解本題的關鍵.22、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解題分析】試題分析:把點的坐標代入即可求得拋物線的解析式.作BH⊥AC于點H,求出的長度,即可求出∠ACB的度數(shù).延長CD交x軸于點G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點的坐標.試題解析:(1)由題意,得解得.∴這條拋物線的表達式為.(2)作BH⊥AC于點H,∵A點坐標是(-1,0),C點坐標是(0,3),B點坐標是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長CD交x軸于點G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點坐標是(4,0).∵點C坐標是(0,3),∴.∴解得,(舍).∴點D坐標是23、(1)a=3,b=-2;(2)m≥8或m≤-2【解題分析】

(1)把A點坐標代入反比例解析式確定出a的值,確定出A坐標,代入一次函數(shù)解析式求出b的值;(2)分別求出直線l1與x軸交于點D,再求出直線l2與x軸交于點B,從而得出直線l2與直線l1交于點C坐標,分兩種情況進行討論:①當S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【題目詳解】(1)∵點A在圖象上∴∴a=3∴A(3,1)∵點A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y(tǒng)=x-2(2)設直線y=x-2與x軸的交點為D∴D(2,0)①當點C在點A的上方如圖(1)∵直線y=-x+m與x軸交點為B∴B(m,0)(m>3)∵直線y=-x+m與直線y=x-2相交于點C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點C在點A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【題目點撥】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,三角形的面積,利用了數(shù)形結合的思想,熟練掌握待定系數(shù)法是解本題的關鍵.24、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解題分析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應關系,可得C點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得答案;(1)根據(jù)自變量與函數(shù)值的對應關系,可得F點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得DE的長,根據(jù)平行四邊形的對邊相等,可得關于m的方程,根據(jù)解方程,可得m的值.【題目詳解】解:(1)∵點A(-1,0),點B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+1,∴C(0,1).設BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標代入函數(shù)解析式,得,解得,即BC的函數(shù)解析式為y=-x+1.由P在BC上,F(xiàn)在拋物線上,得P(m,-m+1),F(xiàn)(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應的函數(shù)表達式y(tǒng)=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點E,當x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當m=1時,線段PF與DE重合,m=1(不符合題意,舍).當m=2時,四邊形PEDF為平行四邊形.考點:二次函數(shù)綜合題.25、見解析【解題分析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;

應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,

∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.

∵∠A=∠F,

∴∠BCD=∠ECG.

∴∠BCD-∠ECD=∠ECG-∠ECD,

即∠BCE=∠DCG.

在△BCE和△DCG中,∴△BCE≌△DCG(SAS),

∴BE=DG.應用:∵四邊形ABCD為菱形,

∴AD∥BC,

∵BE=DG,

∴S△ABE+S△CDE=S△BEC=S△CDG=8,

∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.26、(1)5;(2)5n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論