版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市宿城一中學2024屆中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數(shù)根2.如圖,兩個反比例函數(shù)y1=(其中k1>0)和y2=在第一象限內的圖象依次是C1和C2,點P在C1上.矩形PCOD交C2于A、B兩點,OA的延長線交C1于點E,EF⊥x軸于F點,且圖中四邊形BOAP的面積為6,則EF:AC為()A.:1 B.2: C.2:1 D.29:143.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.4.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個圓錐的側面,則這個圓錐的高為()cm.A. B. C. D.5.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為7.已知點、都在反比例函數(shù)的圖象上,則下列關系式一定正確的是()A. B. C. D.8.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.9.若x=-2是關于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或410.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,點CE=1,AC=4,則下列結論一定正確的個數(shù)是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.若n邊形的內角和是它的外角和的2倍,則n=.12.定義:在平面直角坐標系xOy中,把從點P出發(fā)沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設A,B,C三個小區(qū)的坐標分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.13.因式分解:3a3﹣3a=_____.14.已知(x-ay)(x+ay),那么a=_______15.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.16.若關于x的方程有兩個相等的實數(shù)根,則m的值是_________.三、解答題(共8題,共72分)17.(8分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據(jù)商場的活動方式:若一次性付款4200元購買這種籃球,則在商場購買的數(shù)量比在商場購買的數(shù)量多5個,請求出這種籃球的標價;學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案)18.(8分)今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.(1)求B點到直線CA的距離;(2)執(zhí)法船從A到D航行了多少海里?(結果保留根號)19.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).20.(8分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結果保留根號)21.(8分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.22.(10分)“中國制造”是世界上認知度最高的標簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調,已知購買1臺A型號的空調比1臺B型號的空調少200元,購買2臺A型號的空調與3臺B型號的空調共需11200元,求A、B兩種型號的空調的購買價各是多少元?23.(12分)如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1(,),B1(,),C1(,);畫出點C關于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.24.已知,平面直角坐標系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數(shù))(1)若關于x的反比例函數(shù)y=過點A,求t的取值范圍.(2)若關于x的一次函數(shù)y=bx過點A,求t的取值范圍.(3)若關于x的二次函數(shù)y=x2+bx+b2過點A,求t的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y(tǒng)=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數(shù)根,據(jù)此對各選項進行判斷即可.【題目詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數(shù)根,故D選項錯誤,故選C.【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.2、A【解題分析】試題分析:首先根據(jù)反比例函數(shù)y2=的解析式可得到=×3=,再由陰影部分面積為6可得到=9,從而得到圖象C1的函數(shù)關系式為y=,再算出△EOF的面積,可以得到△AOC與△EOF的面積比,然后證明△EOF∽△AOC,根據(jù)對應邊之比等于面積比的平方可得到EF﹕AC=.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義3、D【解題分析】
首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【題目詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【題目點撥】此題主要考查了銳角三角函數(shù)的定義,關鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.4、B【解題分析】分析:直接利用圓錐的性質求出圓錐的半徑,進而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個圓錐的高為:(cm).故選B.點睛:此題主要考查了圓錐的計算,正確得出圓錐的半徑是解題關鍵.5、D【解題分析】
利用兩點法可畫出函數(shù)圖象,則可求得答案.【題目詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【題目點撥】本題主要考查一次函數(shù)的性質,正確畫出函數(shù)圖象是解題的關鍵.6、B【解題分析】
配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【題目詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【題目點撥】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).7、A【解題分析】分析:根據(jù)反比例函數(shù)的性質,可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內,y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數(shù),利用反比例函數(shù)的性質是解題關鍵.8、D【解題分析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質;2.等邊三角形的性質;3.含30度角的直角三角形;4.勾股定理.9、C【解題分析】試題解析:∵x=-2是關于x的一元二次方程的一個根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得a1=-2,a2=1.
即a的值是1或-2.
故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.10、D【解題分析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解題分析】此題涉及多邊形內角和和外角和定理多邊形內角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=612、(1,﹣2).【解題分析】
若設M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).13、3a(a+1)(a﹣1).【解題分析】
首先提取公因式3a,進而利用平方差公式分解因式得出答案.【題目詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【題目點撥】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.14、±4【解題分析】
根據(jù)平方差公式展開左邊即可得出答案.【題目詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【題目點撥】本題考查的平方差公式:.15、11π﹣.【解題分析】
陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【題目詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【題目點撥】考查不規(guī)則圖形的面積的計算,掌握扇形的面積公式是解題的關鍵.16、m=-【解題分析】
根據(jù)題意可以得到△=0,從而可以求得m的值.【題目詳解】∵關于x的方程有兩個相等的實數(shù)根,∴△=,解得:.故答案為.三、解答題(共8題,共72分)17、(1)這種籃球的標價為每個50元;(2)見解析【解題分析】
(1)設這種籃球的標價為每個x元,根據(jù)題意可知在B超市可買籃球個,在A超市可買籃球個,根據(jù)在B商場比在A商場多買5個列方程進行求解即可;(2)分情況,單獨在A超市買100個、單獨在B超市買100個、兩家超市共買100個進行討論即可得.【題目詳解】(1)設這種籃球的標價為每個x元,依題意,得,解得:x=50,經(jīng)檢驗:x=50是原方程的解,且符合題意,答:這種籃球的標價為每個50元;(2)購買100個籃球,最少的費用為3850元,單獨在A超市一次買100個,則需要費用:100×50×0.9-300=4200元,在A超市分兩次購買,每次各買50個,則需要費用:2(50×50×0.9-300)=3900元,單獨在B超市購買:100×50×0.8=4000元,在A、B兩個超市共買100個,根據(jù)A超市的方案可知在A超市一次購買:=44,即購買45個時花費最小,為45×50×0.9-300=1725元,兩次購買,每次各買45個,需要1725×2=3450元,其余10個在B超市購買,需要10×50×0.8=400元,這樣一共需要3450+400=3850元,綜上可知最少費用的購買方案:在A超市分兩次購買,每次購買45個籃球,費用共為3450元;在B超市購買10個,費用400元,兩超市購買100個籃球總費用3850元.【題目點撥】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.18、(1)B點到直線CA的距離是75海里;(2)執(zhí)法船從A到D航行了(75﹣25)海里.【解題分析】
(1)過點B作BH⊥CA交CA的延長線于點H,根據(jù)三角函數(shù)可求BH的長;(2)根據(jù)勾股定理可求DH,在Rt△ABH中,根據(jù)三角函數(shù)可求AH,進一步得到AD的長.【題目詳解】解:(1)過點B作BH⊥CA交CA的延長線于點H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執(zhí)法船從A到D航行了(75﹣25)海里.【題目點撥】本題主要考查了勾股定理的應用,解直角三角形的應用-方向角問題.能合理構造直角三角形,并利用方向角求得三角形內角的大小是解決此題的關鍵.19、(1)見解析;(2)40°.【解題分析】
(1)根據(jù)角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質結合三角形內角和定理即可求出∠A的度數(shù).【題目詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【題目點撥】本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據(jù)平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.20、DE的長度為6+1.【解題分析】
根據(jù)相似三角形的判定與性質解答即可.【題目詳解】解:過E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設EF為x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的長度為6+1.【題目點撥】本題考查相似三角形性質的應用,解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.21、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).【解題分析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)垂線間的關系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標;
(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質,可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值【題目詳解】解:(1)將A,B點坐標代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯(lián)立PA與拋物線,得,解得(舍),,即P(6,﹣14);當PB⊥AB時,PB的解析式為y=﹣2x+3,聯(lián)立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【題目點撥】本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關鍵22、A、B兩種型號的空調購買價
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- g k h 說課稿-2024-2025學年語文一年級上冊統(tǒng)編版
- 2024年四年級英語上冊 Unit 5 I like those shoes Lesson 30說課稿 人教精通版(三起)
- 14小狗學叫 說課稿-2024-2025學年三年級上冊語文統(tǒng)編版
- 項目產(chǎn)品推廣方案
- Unit 1 My classroom Part B Read and write 大單元整體說課稿表格式-2024-2025學年人教PEP版英語四年級上冊
- 5《協(xié)商決定班級事務》第1課時(說課稿)-部編版道德與法治五年級上冊
- 出售供暖平房合同范本
- Unit 4 Then and now 單元整體(說課稿)-2023-2024學年人教PEP版英語六年級下冊
- 萬億存款合同范例
- 中介房產(chǎn)抵押合同范例
- Unit 2 Know your body(說課稿)-2024-2025學年外研版(三起)(2024)英語三年級下冊
- 跨學科主題學習2-探索太空逐夢航天 說課稿-2024-2025學年粵人版地理七年級上冊
- 《電子技術應用》課程標準(含課程思政)
- 電力儲能用集裝箱技術規(guī)范
- 小學生雪豹課件
- 《課標教材分析》課件
- 《信號工程施工》課件 項目一 信號圖紙識讀
- 基礎護理常規(guī)制度
- 針灸治療動眼神經(jīng)麻痹
- 傾聽幼兒馬賽克方法培訓
- 設備日常維護及保養(yǎng)培訓
評論
0/150
提交評論