版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市部分區(qū)(薊州區(qū))2024屆中考適應性考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.邊長相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶2.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=3.如圖,⊙O的半徑OC與弦AB交于點D,連結OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分4.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°5.下列運算正確的是()A.a4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b36.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③7.下列四個命題中,真命題是()A.相等的圓心角所對的兩條弦相等B.圓既是中心對稱圖形也是軸對稱圖形C.平分弦的直徑一定垂直于這條弦D.相切兩圓的圓心距等于這兩圓的半徑之和8.下列運算正確的是()A.a3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a29.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.10.如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.11.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.12.如圖,在邊長為6的菱形中,,以點為圓心,菱形的高為半徑畫弧,交于點,交于點,則圖中陰影部分的面積是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖是矗立在高速公路水平地面上的交通警示牌,經測量得到如下數(shù)據:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結果精確到0.1米,參考數(shù)據:2≈1.41,3≈1.73)14.如圖,拋物線交軸于,兩點,交軸于點,點關于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.15.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.16.不等式組的解集是▲.17.=________18.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點E,連接BD則陰影部分的面積為____(結果保留π)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.20.(6分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數(shù)表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最???若存在,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.21.(6分)某單位為了擴大經營,分四次向社會進行招工測試,測試后對成績合格人數(shù)與不合格人數(shù)進行統(tǒng)計,并繪制成如圖所示的不完整的統(tǒng)計圖.(1)測試不合格人數(shù)的中位數(shù)是.(2)第二次測試合格人數(shù)為50人,到第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,若這兩次測試的平均增長率相同,求平均增長率;(3)在(2)的條件下補全條形統(tǒng)計圖和扇形統(tǒng)計圖.22.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結果精確到1米,參考數(shù)據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(8分)計算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣124.(10分)為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?25.(10分)(1)計算:(2)先化簡,再求值:,其中x是不等式的負整數(shù)解.26.(12分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.27.(12分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】解:設正三角形的邊長為1a,則正六邊形的邊長為1a.過A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點睛:本題主要考查了正三角形與正六邊形的性質,根據已知利用解直角三角形知識求出正六邊形面積是解題的關鍵.2、D【解題分析】
根據平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【題目詳解】解:當或時,,
即或.
所以D選項是正確的.【題目點撥】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.也考查了平行線分線段成比例定理的逆定理.3、C【解題分析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.4、D【解題分析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【題目點撥】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.5、B【解題分析】分析:根據合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質,逐一計算判斷即可.詳解:根據同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質,熟記并靈活運用是解題關鍵.6、A【解題分析】
解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.7、B【解題分析】試題解析:A.在同圓或等圓中,相等的圓心角所對的兩條弦相等,故A項錯誤;B.圓既是中心對稱圖形也是軸對稱圖形,正確;C.平分弦(不是直徑)的直徑一定垂直于這條弦,故C選項錯誤;D.外切兩圓的圓心距等于這兩圓的半徑之和,故選項D錯誤.故選B.8、D【解題分析】試題分析:根據同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據完全平方公式求解;根據合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質,熟記性質與公式并理清指數(shù)的變化是解題的關鍵.9、B【解題分析】
由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.【題目詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【題目點撥】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數(shù)的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.10、D【解題分析】
求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【題目詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【題目點撥】本題考查了三角形的三邊關系定理和用待定系數(shù)法求一次函數(shù)的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.11、A【解題分析】
此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據題意得:,解得:a=1,經檢驗,a=1是原分式方程的解,故本題選A.12、B【解題分析】
由菱形的性質得出AD=AB=6,∠ADC=120°,由三角函數(shù)求出菱形的高DF,圖中陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積,根據面積公式計算即可.【題目詳解】∵四邊形ABCD是菱形,∠DAB=60°,
∴AD=AB=6,∠ADC=180°-60°=120°,
∵DF是菱形的高,
∴DF⊥AB,
∴DF=AD?sin60°=6×=3,
∴陰影部分的面積=菱形ABCD的面積-扇形DEFG的面積=6×3=18-9π.
故選B.【題目點撥】本題考查了菱形的性質、三角函數(shù)、菱形和扇形面積的計算;由三角函數(shù)求出菱形的高是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.9【解題分析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點:解直角三角形.14、【解題分析】
根據拋物線解析式求得點D(1,4)、點E(2,3),作點D關于y軸的對稱點D′(﹣1,4)、作點E關于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據此根據勾股定理可得答案.【題目詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關于對稱軸的對稱點E的坐標為(2,3),作點D關于y軸的對稱點D′(﹣1,4),作點E關于x軸的對稱點E′(2,﹣3),連結D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【題目點撥】本題主要考查拋物線的性質以及兩點間的距離公式,解題的關鍵是熟練掌握拋物線的性質,利用數(shù)形結合得出答案.15、1+【解題分析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構建出與已知和所求相關的直角三角形是解答此題的關鍵.16、﹣1<x≤1【解題分析】解一元一次不等式組.【分析】解一元一次不等式組,先求出不等式組中每一個不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解).因此,解第一個不等式得,x>﹣1,解第二個不等式得,x≤1,∴不等式組的解集是﹣1<x≤1.17、13【解題分析】=2+9-4+6=13.故答案是:13.18、π.【解題分析】
如圖,連接OE,利用切線的性質得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計算的面積即可得到陰影部分的面積.【題目詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【題目點撥】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了矩形的性質和扇形的面積公式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)150,(1)證明見解析(3)【解題分析】
(1)根據旋轉變換的性質得到△PAP′為等邊三角形,得到∠P′PC=90°,根據勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據余弦的定義得到PP′=PA,根據勾股定理解答即可;(3)與(1)類似,根據旋轉變換的性質、勾股定理和余弦、正弦的關系計算即可.試題解析:【題目詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉變換的性質可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉變換的性質可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【題目點撥】本題考查的是旋轉變換的性質、等邊三角形的性質、勾股定理的應用,掌握等邊三角形的性質、旋轉變換的性質、靈活運用類比思想是解題的關鍵.20、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解題分析】
(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據兩點式求出直線AC的函數(shù)表達式;
(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;
(3)根據D點關于PE的對稱點為點C(1,-3),點Q(0,-1)點關于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;
(4)結合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【題目詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時的D和H點重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據點A和F的坐標中點和點C和點H的坐標中點相同,再根據|HA|=|CF|,求出綜上所述,滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),,.【題目點撥】屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點坐標,待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質等,綜合性比較強,難度較大.21、(1)1;(2)這兩次測試的平均增長率為20%;(3)55%.【解題分析】
(1)將四次測試結果排序,結合中位數(shù)的定義即可求出結論;(2)由第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,可求出第四次測試合格人數(shù),設這兩次測試的平均增長率為x,由第二次、第四次測試合格人數(shù),即可得出關于x的一元二次方程,解之取其中的正值即可得出結論;(3)由第二次測試合格人數(shù)結合平均增長率,可求出第三次測試合格人數(shù),根據不合格總人數(shù)÷參加測試的總人數(shù)×100%即可求出不合格率,進而可求出合格率,再將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整,此題得解.【題目詳解】解:(1)將四次測試結果排序,得:30,40,50,60,∴測試不合格人數(shù)的中位數(shù)是(40+50)÷2=1.故答案為1;(2)∵每次測試不合格人數(shù)的平均數(shù)為(60+40+30+50)÷4=1(人),∴第四次測試合格人數(shù)為1×2﹣18=72(人).設這兩次測試的平均增長率為x,根據題意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去),∴這兩次測試的平均增長率為20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.補全條形統(tǒng)計圖與扇形統(tǒng)計圖如解圖所示.【題目點撥】本題考查了一元二次方程的應用、扇形統(tǒng)計圖、條形統(tǒng)計圖、中位數(shù)以及算術平均數(shù),解題的關鍵是:(1)牢記中位數(shù)的定義;(2)找準等量關系,正確列出一元二次方程;(3)根據數(shù)量關系,列式計算求出統(tǒng)計圖中缺失數(shù)據.22、觀景亭D到南濱河路AC的距離約為248米.【解題分析】
過點D作DE⊥AC,垂足為E,設BE=x,根據AE=DE,列出方程即可解決問題.【題目詳解】過點D作DE⊥AC,垂足為E,設BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.23、1【解題分析】
根據特殊角的三角函數(shù)值、零指數(shù)冪的運算法則、負整數(shù)指數(shù)冪的運算法則、絕對值的性質進行化簡,計算即可.【題目詳解】原式=1×+3﹣+1﹣1=1.【題目點撥】此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋼筋施工承攬具體合同版B版
- 一年級人自然社會教案(全冊)浙江版
- 預制柱吊裝施工工藝正式版
- 2024版蘇州租賃房屋家具清單3篇
- 2024年餐飲業(yè)標準原材料購銷協(xié)議樣本一
- 2024年簡化版離婚協(xié)議書樣本
- 黔南民族師范學院《offce辦公軟件三劍客》2023-2024學年第一學期期末試卷
- 2024蘇州二手房買賣合同風險評估與防控措施協(xié)議3篇
- 重慶文理學院《JAVA面向對象編程》2023-2024學年第一學期期末試卷
- 3.1多變的天氣【幫課堂】2025學年七年級地理上冊同步學與練(人教版)(解析版)
- 2025年下半年貴州高速公路集團限公司統(tǒng)一公開招聘119人高頻重點提升(共500題)附帶答案詳解
- 資產評估服務房屋征收項目測繪實施方案
- 國家安全責任制落實情況報告3篇
- 麻醉藥品、精神藥品處方權資格考試試題(2024年)
- 2024年度玩具代工生產及銷售合同模板(2024版)3篇
- 業(yè)主大會和業(yè)主委員會工作指導手冊
- 2024年小學五年級科學教學工作總結(2篇)
- 2023年首都機場集團有限公司招聘考試真題
- 【7歷期末】安徽省蚌埠市2023-2024學年部編版七年級歷史上學期期末統(tǒng)考試卷(含解析)
- 廣東省深圳市重點中學2021-2022學年高二上學期期末生物試題
- 2024-2025學年冀教版數(shù)學五年級上冊期末測試卷(含答案)
評論
0/150
提交評論