版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MathematicalModeling數(shù)學(xué)建模(英文版)機(jī)械工業(yè)出版社,北京,2003.5經(jīng)典原版書(shū)庫(kù),原書(shū)名:AFirstCourseinMathematicalModeling(ThirdEdition)byFrankR.Giordano,MauriceD.Weir,WilliamP.Fox1Chapter1ModelingChangeIntroduction Weoftendescribeaparticularphenomenonmathematically(bymeansofafunctionoranequation,forinstance). Suchamathematicalmodelisanidealizationofthereal-worldphenomenonandneveracompletelyaccuraterepresentation.2MathematicalModels Weareofteninterestedinpredictingthevalueofavariableatsometimeinthefuture.Amathematicalmodelcanhelpusunderstandabehaviorbetteroraidusinplanningforthefuture.
Let'sthinkofamathematicalmodelasamathematicalconstructdesignedtostudyaparticularreal-worldsystemorbehaviorofinterest.3 Themodelallowsustoreachmathematicalconclusionsaboutthe behavior,asillustratedinFigure1.1. Theseconclusionscanbeinterpretedtohelpadecisionmakerplanforthefuture. Inthischapterwedirectourattentiontomodelingchange.4Figure1.1Aflowofthemodelingprocessbeginningwithanexaminationofreal-worlddataReal-worlddataModelMathematicalconclusionsPredictions/explanationssimplificationAnalysisVerificationInterpretation5Simplification Mostmodelssimplifyreality.Generally,modelscanonlyapproximatereal-worldbehavior.Oneverypowerfulsimplifyingrelationshipisproportionality.6
DefinitionTwovariablesyandxareproportional(toeachother)ifoneisalwaysaconstantmultipleoftheother,thatis,ify=kxforsomenonzeroconstantk.Wewritey
x. Thedefinitionmeansthatthegraphofyversusxliesalongastraightlinethroughtheorigin.Thisgraphicalobservationisusefulintestingwhetheragivendatacollectionreasonablyassumesaproportionalityrelationship.7Example1
TestingforProportionality
Consideraspring-masssystem(Figure1.2).Weconductanexperimenttomeasurethestretchofthespringasafunctionofthemass(measuredasweight)placedonthespring.Considerthedatacollectedforthisexperiment,displayedinTable1.1.Figure1.2Spring-masssystem8Table1.1Spring-masssystemMass50100150200250Elongation1.0001.8752.7503.2504.3753003504004505005504.8755.6756.5007.2508.0008.7509
Ascatterplotgraphofthestretchorelongationofthespringversusthemassorweightplacedonitrevealsanapproximatestraightlinepassingthroughtheorigin.Figure1.3Datafromspring-masssystem10 Thedataappeartofollowtheproportionalityrulethatelongationeisproportionaltothemassm,orsymbolically,e
m. Wecalculatetheslopeofthelinejoiningthesepointsas Andthemodelisestimatedase=0.0163m.11 Byplottingthelinethemodelrepresentssuperimposedonthescatterplot(Figure1.4),thegraphrevealsthatthesimplifyingproportionalitymodelisreasonable.Figure1.4Datafromspring-masssystem12ModelingChange Apowerfulparadigmtouseinmodelingchangeis
futurevalue=presentvalue+change. Often,wewishtopredictthefutureonwhatweknownowandthechangethathasbeencarefullyobserved.Insuchcases,webeginbystudyingthechangeitselfaccordingtotheformula
change=futurevalue
presentvalue.13 Ifthebehaviorofinterestistakingplaceoverdiscretetimeperiods,theprecedingconstructleadstoadifferenceequation. Otherwise,ifthebehavioristakingplacecontinuouslywithrespecttotime,thentheconstructleadstoadifferentialequation.141.1ModelingChangewithDifferenceEquations
DefinitionForasequenceofnumbersA={a0,a1,a2,…},thenthfirstdifferencesare
an=an+1
an,n=0,1,2,…
NotefromFigure1.5thatthedifferencerepresentstheriseorfallbetweenconsecutivevaluesofthesequence.15Figure1.5Thefirstdifferenceofasequenceistheriseinthegraphduringonetimeperiod16Example1ASavingsCertificate Considerthevalueofasavingscertificateinitiallyworth$1000thataccumulatesinterestpaideachmonthat1%permonth.Thefollowingsequenceofnumbersrepresentsthevalueofthecertificatemonthbymonth:A={1000,1010,1020.10,1030.30,…}.17 ThefirstdifferenceofAareasfollows: Thisexpressioncanberewrittenasthedifferenceequation:whichgivesthedynamicalsystemmodel:18 Equation(1.1)representsaninfinitesetofalgebraicequations,calledadynamicalsystem. Dynamicalsystemsallowustodescribethechangefromoneperiodtothenext. Thedifferenceequationformulacomputesthenexttermknowingtheimmediatelypreviousterminthesequence,butitdoesnotcomputethevalueofaspecifictermdirectly(e.g.,thesavingsafter100periods).19 Tomodifyourexample,ifweweretowithdraw$50fromtheaccounteachmonth,thechangeduringaperiodwouldbetheinterestearnedduringthatperiodminusthemonthlywithdrawal,or20 Inmostexamples,mathematicallydescribingthechangeisnotgoingtobeaspreciseaprocedureasillustratedhere.Oftenitisnecessarytoplotthechange,observeapattern,andthendescribethechangeinmathematicalterms.Thatis,wewillbetryingtofindchange=
an=somefunctionf.21 Thechangemaybeafunctionofprevioustermsinthesequence,oritmayalsoinvolvesomeexternalterms.Thus,wewillbemodelingchangeindiscreteintervalsthisway:
change=
an=an+1
an
=f(termsinthesequence,externalterms). Modelingchangeinthiswaybecomestheartofdeterminingorapproximatingafunctionfthatrepresentsthechange.22Example2MortgagingaHome Sixyearsagoyourparentspurchasedahomebyfinancing$80000for20years,payingmonthlypaymentsof$880.87withamonthlyinterestof1%. Theyhavemade72paymentsandwishtoknowhowmuchtheyoweonthemortgage,whichtheyareconsideringpayingoffwithaninheritancetheyreceived.23 Thechangeintheamountowedeachperiodincreasesbytheamountofinterestanddecreasesbytheamountofthepayment: Solvingforbn+1andincorporatingtheinitialconditiongivesthedynamicalsystemmodel24Thus,yieldingthesequenceB={80000,79919.13,79837.45,…}. ThesequenceisgraphedinFigure1.6.ThefigureisplottedwithMatlab,b72=71532,b241=025Figure1.6ThesequenceandgraphforExample226 Inthissectionwehavediscussedbehaviorsintheworldthatcanbemodeledexactlybydifferenceequations.Inthenextsection,weusedifferenceequationtoapproximateobservedchange.Aftercollectingdataforthechangeanddiscerningpatternsofthebehavior,wewillusetheconceptofproportionalitytotestandfitmodelsthatwepropose.271.2ApproximatingChangewithDifferenceEquations
Inmostexamples,describingthechangemathematicallywillnotbeaspreciseaprocedureasinthesavingscertificateandmortgageexamplespresentedintheprevioussection.Typically,wemustplotthechange,observeapattern,andthenapproximatethechangeinmathematicalterms.28Example1GrowthofaYeastCulture Thedatainthetablebellowwascollectedfromanexperimentmeasuringthegrowthofayeastculture.TheGraph1.7representstheassumptionthatthechangeinpopulationisproportionaltothecurrentsizeofthepopulation.Thatis,
pn=pn+1
pn=kpn,wherepnrepresentsthesizeofthepopulationbiomassafternhours,andkisapositiveconstant.Thevalueofkdependsonthetimemeasurement.Inthisexamplek
0.5.29Timeinhoursn01234567Observedyeastbiomasspn9.618.329.047.271.1119.1174.6257.3Changeinbiomasspn+1
pn8.710.718.223.948.055.582.7
30Figure1.7Growthofayeastcultureversusbiomass31 Usingtheestimatek=0.5fortheslopeoftheline,wehypothesizetheproportionalitymodel
pn=pn+1
pn=0.5pn,yieldingthepredictionpn+1=1.5pn. Thismodelpredictsapopulationthatincreasesforever,whichisquestionable.32
ModelRefinement:ModelingBirths,Deaths,andResources Ifbothbirthsanddeathsduringaperiodareproportionaltothepopulation,thenthechangeinpopulationshouldbeproportionaltothepopulation,aswasillustratedinExample1.However,certainresources(e.g.,food)cansupportonlyamaximumpopulationlevelratherthanonethatincreasesindefinitely.Asthesemaximumlevelsareapproached,growthshouldslow.33Example2GrowthofaYeastCultureRevisited FindingaModelThedatainFigure1.8showwhatactuallyhappenstotheyeastculturegrowinginarestrictedareaastimeincreasesbeyondtheeightobservationsgiveninFigure1.734Timeinhoursn01234567Observedyeastbiomasspn9.618.329.047.271.1119.1174.6257.3Changeinbiomasspn+1
pn8.710.718.223.948.055.582.793.489101112131415161718350.7441.0513.3559.7594.8629.4640.8651.1655.9659.6661.190.372.346.435.134.611.410.34.83.72.2
35Figure1.8Yeastbiomassapproachesalimitingpopulationlevel36 Fromthethirdrowofthedatatablenotethatthechangeinpopulationperhourbecomessmallerastheresourcesbecomemorelimitedorconstrained.Fromthegraphofpopulationversustime,thepopulationappearstobeapproachingalimitingvalueorcarryingcapacity.Basedonourgraphweestimatethecarryingcapacitytobe665.37 Because665
pngetssmalleraspnapproaches665,weproposethemodel
pn=pn+1
pn=k(665
pn)pn,whichcausesthechange
ptobecomeincreasinglysmallaspnapproaches665. Mathematically,thishypothesizedmodelstatesthatthechange
pisproportionaltotheproduct(665
pn)pn. Totestthemodel,plot(pn+1
pn)versus(665
pn)pntoseeifthereisareasonableproportionality.Thenestimatetheproportionalityconstantk.38pn+1
pn8.710.718.223.948.055.5pn(665
pn)6291.8411834.6118444.0029160.1642226.2965016.6911.410.34.83.72.222406.6415507.369050.295968.693561.8434.641754.9682.793.490.372.346.435.185623.84104901.21110225.0198784.0077867.6158936.41Dataofpn+1
pnversus(665
pn)pn39Figure1.9Testingtheconstrainedgrowthmodel40 ExaminingFigure1.9,weseethattheplotdoesreasonablyapproximateastraightlineprojectedthroughtheorigin.Weestimatetheslopeofthelineapproximatingthedatatobeaboutk
0.00082,whichgivesthemodelpn+1
pn=0.00082(665
pn)pn.(1.2)SolvingtheModelNumerically
SolvingEquation(1.2)forpn+1givespn+1=pn+0.00082(665
pn)pn,(1.3)whichgivesadynamicalsystemmodelwiththeinitialvaluep0=9.6.41 ThisnumericalsolutionofmodelpredictionsispresentedinFigure1.10.Thepredictionsandobservationsareplottedtogetherversustimeonthesamegraph.Notethatthemodelcapturesfairlywellthetrendoftheobserveddata.42Figure1.10Modelpredictionsandobservations43Example3SpreadofaContagiousDisease Supposethereare400studentsinacollegedormitoryandthatoneormorestudentshaveaseverecaseoftheflu.Letinrepresentthenumberofinfectedstudentsafterntimeperiods. Assumesomeinteractionbetweenthoseinfectedandthosenotinfectedisrequiredtopassonthedisease.44 Ifallaresusceptibletothedisease,then400
inrepresentsthosesusceptiblebutnotyetinfected.Ifthoseinfectedremaincontagious,wecanmodelthechangeofthoseinfectedasaproportionalitytotheproductofthoseinfectedbythosesusceptiblebutnotyetinfected,or
in=in+1
in=kin(400
in).(1.4)45 Inthismodeltheproductin(400
in)representsthenumberofpossibleinteractionsbetweenthoseinfectedandthosenotinfectedattimen. Afractionkoftheseinteractionswouldcauseadditionalinfections,representedby
in.46 Equation(1.4)hasthesameformasEquation(1.2),butintheabsenceofanydatawecannotdetermineavaluefortheproportionalityconstantk.Nevertheless,agraphofthepredictionsdeterminedbyEquation(1.4)wouldhavethesameSshapeastheyeastpopulationinFigure1.10.47Example4
DecayofDigoxinintheBloodstream Digoxinisusedinthetreatmentofheartdisease.Doctormustprescribeanamountofmedicinethatkeepstheconcentrationofdigoxininthebloodstreamaboveaneffectivelevelwithoutexceedingasafelevel(thereisvariationamongpatients).48 Foraninitialdosageof0.5mginthebloodstream,tablebelowshowstheamountof
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版建筑資質(zhì)股權(quán)轉(zhuǎn)讓中介協(xié)議版
- 2024版精制鋼模板購(gòu)銷(xiāo)合同3篇
- 二零二五年度景區(qū)餐飲服務(wù)承包合同樣本3篇
- 2024電商產(chǎn)業(yè)園消防設(shè)施維護(hù)合同3篇
- 2024年智慧旅游服務(wù)開(kāi)發(fā)合作協(xié)議
- 水資源循環(huán)利用項(xiàng)目開(kāi)發(fā)投資協(xié)議
- 智能型電子產(chǎn)品研發(fā)合同
- 藥品供應(yīng)合同
- 藝術(shù)品交易市場(chǎng)監(jiān)管協(xié)議
- 重大疾病防治合作協(xié)議
- 綠色簡(jiǎn)潔商務(wù)匯總報(bào)告PPT模板課件
- 下肢皮牽引護(hù)理PPT課件(19頁(yè)P(yáng)PT)
- 臺(tái)資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書(shū)
- 參會(huì)嘉賓簽到表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評(píng)估流程圖
- 人力資源管理之績(jī)效考核 一、什么是績(jī)效 所謂績(jī)效簡(jiǎn)單的講就是對(duì)
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎(chǔ)研究
- 廢品管理流程圖
評(píng)論
0/150
提交評(píng)論