




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖南長郡教育集團(tuán)重點(diǎn)中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,下列結(jié)論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<02.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐3.的平方根是()A.2 B. C.±2 D.±4.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.5.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.6.在聯(lián)歡會上,甲、乙、丙3人分別站在不在同一直線上的三點(diǎn)A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點(diǎn) B.重心 C.內(nèi)心 D.外心7.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣18.下列一元二次方程中,有兩個不相等實(shí)數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=09.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=210.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是_________.12.如圖,點(diǎn)D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.13.分解因式:a2b?8ab+16b=_____.14.甲、乙兩人5次射擊命中的環(huán)數(shù)分別為,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,則這兩人5次射擊命中的環(huán)數(shù)的方差S甲2_____S乙2(填“>”“<”或“=”).15.分解因式:___.16.將161000用科學(xué)記數(shù)法表示為1.61×10n,則n的值為________.17.如圖,中,∠,,的面積為,為邊上一動點(diǎn)(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,M,N均在格點(diǎn)上,P為線段MN上的一個動點(diǎn)(1)MN的長等于_______,(2)當(dāng)點(diǎn)P在線段MN上運(yùn)動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡要說明你是怎么畫的,(不要求證明)19.(5分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應(yīng)值,(表格中的符號“…”表示該項(xiàng)數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達(dá)式(2)拋物線y=ax2+bx+c的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對稱軸上一點(diǎn),直線AM交對稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時,求B點(diǎn)坐標(biāo);(3)在(2)的條件下,設(shè)線段BD與x軸交于點(diǎn)C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說明理由.20.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.21.(10分)已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點(diǎn)O,延長OC至點(diǎn)M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.22.(10分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點(diǎn)D是拋物線上的一動點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請求出點(diǎn)D的坐標(biāo),若不存在,說明理由.23.(12分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線與軸交于點(diǎn).(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點(diǎn)為,是拋物線上位于對稱軸右側(cè)的一點(diǎn),若,且與的面積相等,求點(diǎn)的坐標(biāo);(3)若在軸上有且只有一點(diǎn),使,求的值.24.(14分)十八屆五中全會出臺了全面實(shí)施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進(jìn)人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應(yīng)政府號召,準(zhǔn)備生育兩個小孩(假設(shè)生男生女機(jī)會均等,且與順序無關(guān)).(1)該家庭生育兩胎,假設(shè)每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設(shè)第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】分析:A、根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△>0,由此即可得出x1≠x2,結(jié)論A正確;B、根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=a,結(jié)合a的值不確定,可得出B結(jié)論不一定正確;C、根據(jù)根與系數(shù)的關(guān)系可得出x1?x2=﹣2,結(jié)論C錯誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結(jié)論D錯誤.綜上即可得出結(jié)論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結(jié)論A正確;B、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結(jié)論不一定正確;C、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結(jié)論C錯誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結(jié)論D錯誤.故選A.點(diǎn)睛:本題考查了根的判別式以及根與系數(shù)的關(guān)系,牢記“當(dāng)△>0時,方程有兩個不相等的實(shí)數(shù)根”是解題的關(guān)鍵.2、C【解題分析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進(jìn)而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點(diǎn)睛:本題考查的知識點(diǎn)是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.3、D【解題分析】
先化簡,然后再根據(jù)平方根的定義求解即可.【題目詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【題目點(diǎn)撥】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯.4、C【解題分析】
過點(diǎn)O作OH⊥AB于點(diǎn)H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【題目詳解】過點(diǎn)O作OH⊥AB于點(diǎn)H,連接OA,OB,設(shè)⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【題目點(diǎn)撥】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、C【解題分析】試題分析:根據(jù)實(shí)數(shù)的大小比較法則,正數(shù)大于0,0大于負(fù)數(shù),兩個負(fù)數(shù)相比,絕對值大的反而小.因此,在﹣3,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.6、D【解題分析】
為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點(diǎn)到線段兩端的距離相等可知,要放在三邊中垂線的交點(diǎn)上.【題目詳解】∵三角形的三條垂直平分線的交點(diǎn)到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點(diǎn)最適當(dāng).故選D.【題目點(diǎn)撥】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識解決實(shí)際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關(guān)鍵.7、B【解題分析】
根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【題目詳解】解:∵x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【題目點(diǎn)撥】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.8、B【解題分析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實(shí)數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實(shí)數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實(shí)根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實(shí)根;故選B.點(diǎn)睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時,方程有兩個不相等的實(shí)數(shù)根;②當(dāng)△=0時,方程有兩個相等的實(shí)數(shù)根;③當(dāng)△<0時,方程無實(shí)數(shù)根.9、B【解題分析】
根據(jù)拋物線的對稱軸公式:計(jì)算即可.【題目詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【題目點(diǎn)撥】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.10、D【解題分析】
根據(jù)全等三角形的性質(zhì)可知A,B,C命題均正確,故選項(xiàng)均錯誤;D.錯誤,全等三角也可能是直角三角,故選項(xiàng)正確.故選D.【題目點(diǎn)撥】本題考查全等三角形的性質(zhì),兩三角形全等,其對應(yīng)邊和對應(yīng)角都相等.二、填空題(共7小題,每小題3分,滿分21分)11、.【解題分析】
延長FP交AB于M,當(dāng)FP⊥AB時,點(diǎn)P到AB的距離最?。\(yùn)用勾股定理求解.【題目詳解】解:如圖,延長FP交AB于M,當(dāng)FP⊥AB時,點(diǎn)P到AB的距離最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點(diǎn)P到邊AB距離的最小值是1-1.故答案為:1-1.【題目點(diǎn)撥】本題考查了翻折變換,涉及到的知識點(diǎn)有直角三角形兩銳角互余、勾股定理等,解題的關(guān)鍵是確定出點(diǎn)P的位置.12、3:2【解題分析】因?yàn)镈E∥BC,所以,因?yàn)镋F∥AB,所以,所以,故答案為:3:2.13、b(a﹣4)1【解題分析】
先提公因式,再用完全平方公式進(jìn)行因式分解.【題目詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【題目點(diǎn)撥】本題考查了提公因式與公式法的綜合運(yùn)用,熟練運(yùn)用公式法分解因式是本題的關(guān)鍵.14、>【解題分析】
分別根據(jù)方差公式計(jì)算出甲、乙兩人的方差,再比較大?。绢}目詳解】∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.故答案為:>.【題目點(diǎn)撥】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.15、【解題分析】
先提取公因式,再利用平方差公式分解因式即可.【題目詳解】故答案為:.【題目點(diǎn)撥】本題考查了分解因式,熟練掌握因式法、公式法、十字相乘法、分組分解法的區(qū)別,根據(jù)題目選擇合適的方法是解題的關(guān)鍵.16、5【解題分析】
【科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【題目詳解】∵161000=1.61×105.∴n=5.故答案為5.【題目點(diǎn)撥】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.17、4.【解題分析】
過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時,AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時,AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為:AF×EG=×4×2=4.【題目詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當(dāng)AD⊥BC時,AD最短,
∵BC=7,△ABC的面積為14,
∴當(dāng)AD⊥BC時,,即:,∴.
∴△AEF的面積最小值為:
AF×EG=×4×2=4,故答案為:4.【題目點(diǎn)撥】本題主要考查了折疊問題,解題的關(guān)鍵是利用對應(yīng)邊和對應(yīng)角相等.三、解答題(共7小題,滿分69分)18、(1);(2)見解析.【解題分析】
(1)根據(jù)勾股定理即可得到結(jié)論;
(2)取格點(diǎn)S,T,得點(diǎn)R;取格點(diǎn)E,F(xiàn),得點(diǎn)G;連接GR交MN于點(diǎn)P即可得到結(jié)果.【題目詳解】(1);(2)取格點(diǎn)S,T,得點(diǎn)R;取格點(diǎn)E,F(xiàn),得點(diǎn)G;連接GR交MN于點(diǎn)P【題目點(diǎn)撥】本題考查了作圖-應(yīng)用與設(shè)計(jì)作圖,軸對稱-最短距離問題,正確的作出圖形是解題的關(guān)鍵.19、(1)y=x2﹣4x+2;(2)點(diǎn)B的坐標(biāo)為(5,7);(1)∠BAD和∠DCO互補(bǔ),理由詳見解析.【解題分析】
(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點(diǎn)A的坐標(biāo)即可求出點(diǎn)B的橫坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)B的坐標(biāo);(1)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出A、D的坐標(biāo),過點(diǎn)A作AN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,根據(jù)點(diǎn)B、D的坐標(biāo)利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)N的坐標(biāo),利用兩點(diǎn)間的距離公式可求出BA、BD、BN的長度,由三者間的關(guān)系結(jié)合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質(zhì)可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補(bǔ).【題目詳解】(1)當(dāng)x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達(dá)式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點(diǎn)A到拋物線的距離與點(diǎn)B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點(diǎn)A的橫坐標(biāo)為0,∴點(diǎn)B到拋物線的距離為1,∴點(diǎn)B的橫坐標(biāo)為1+2=5,∴點(diǎn)B的坐標(biāo)為(5,7).(1)∠BAD和∠DCO互補(bǔ),理由如下:當(dāng)x=0時,y=x2﹣4x+2=2,∴點(diǎn)A的坐標(biāo)為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點(diǎn)D的坐標(biāo)為(2,﹣2).過點(diǎn)A作AN∥x軸,交BD于點(diǎn)N,則∠AND=∠DCO,如圖所示.設(shè)直線BD的表達(dá)式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達(dá)式為y=1x﹣2.當(dāng)y=2時,有1x﹣2=2,解得:x=,∴點(diǎn)N的坐標(biāo)為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補(bǔ).【題目點(diǎn)撥】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、等底三角形面積的關(guān)系、二次函數(shù)的圖像與性質(zhì)、相似三角形的判定與性質(zhì).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵;熟練掌握等底三角形面積的關(guān)系式解(2)的關(guān)鍵;證明△ABD∽△NBA是解(1)的關(guān)鍵.20、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解題分析】
(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時,PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【題目詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當(dāng)BD的值最大時,PM的值最大,△PMN的面積最大,∴當(dāng)B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【題目點(diǎn)撥】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運(yùn)用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會利用三角形的三邊關(guān)系解決最值問題,屬于中考壓軸題.21、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解題分析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.22、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點(diǎn)坐標(biāo)為(1,2)或(4,﹣25).【解題分析】
(1)設(shè)交點(diǎn)式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計(jì)算出AC=,BC=,接著利用面積法計(jì)算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計(jì)算出BH=,CH=,再根據(jù)兩點(diǎn)間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【題目詳解】(1)設(shè)拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當(dāng)x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n).∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥咨詢采購合同范本
- 倉儲貨架合同范本
- 勞動合同范本醫(yī)療
- 會計(jì)臨聘用合同范本
- 展廳工程合同范本
- 出貨協(xié)議合同范本
- 義賣贊助合同范本
- 北京和杭州租房合同范本
- 勞務(wù)用工勞務(wù)合同范本
- 出售高端養(yǎng)老房合同范例
- 電子商務(wù)數(shù)據(jù)分析基礎(chǔ)(第二版) 課件 模塊1、2 電子商務(wù)數(shù)據(jù)分析概述、基礎(chǔ)數(shù)據(jù)采集
- YB-T+4190-2018工程用機(jī)編鋼絲網(wǎng)及組合體
- 高大模板安全施工施工安全保證措施
- 比亞迪公司應(yīng)收賬款管理的問題及對策分析
- 【高考真題】2024年新課標(biāo)全國Ⅱ卷高考語文真題試卷(含答案)
- 委托辦理報廢汽車協(xié)議書
- 旅游服務(wù)質(zhì)量評價體系
- 義烏市建筑工程質(zhì)量通病防治措施100條(2022版本)
- 蘇教版(SJ)《四年級下冊數(shù)學(xué)》補(bǔ)充習(xí)題
- 體育足球籃球排球體操教案
- 統(tǒng)編版高中政治必修3必背主觀題
評論
0/150
提交評論