版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中位線定理教學(xué)設(shè)計(jì)【四篇】教學(xué)設(shè)計(jì)是根據(jù)課程標(biāo)準(zhǔn)的要求和教學(xué)對(duì)象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設(shè)想和計(jì)劃。一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。下面是我為大家整理的中位線定理教學(xué)設(shè)計(jì)【四篇】,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
中位線定理教學(xué)設(shè)計(jì)1
【教學(xué)目標(biāo)】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質(zhì)
3、探索三角形的中位線的性質(zhì)的一些簡(jiǎn)單的應(yīng)用
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):三角形的中位線定理。
難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。
【教學(xué)過(guò)程】
(一)創(chuàng)設(shè)情景,引入新課
1、如圖,為了測(cè)量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測(cè)出DE的長(zhǎng),就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
(2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導(dǎo)學(xué)生概括出中位線的概念。
問(wèn)題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?
啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。
4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)
(二)、師生互動(dòng),探究新知
1、證明你的猜想
引導(dǎo)學(xué)生寫(xiě)出已知,求證,并啟發(fā)分析。
(已知:⊿ABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長(zhǎng)或補(bǔ)短)
學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書(shū)證明過(guò)程,強(qiáng)調(diào)有其他證法。
證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針?lè)较蛐D(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),
∴DF∥BC(根據(jù)什么?),
∴DE1/2BC
2、啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。
(三)學(xué)以致用、落實(shí)新知
1、練一練:已知三角形邊長(zhǎng)分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?
2、想一想:如果⊿ABC的三邊長(zhǎng)分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長(zhǎng)是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG1/2AC。
∴EFHG。
∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?
(四)學(xué)生練習(xí),鞏固新知
1、請(qǐng)回答引例中的問(wèn)題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點(diǎn)。求證:∠PNM=∠PMN
(五)小結(jié)回顧,反思提高
今天你學(xué)到了什么?還有什么困惑?
中位線定理教學(xué)設(shè)計(jì)2
一、教學(xué)目標(biāo):
1.理解三角形中位線的概念,掌握它的性質(zhì).
2.能較熟練地應(yīng)用三角形中位線性質(zhì)進(jìn)行有關(guān)的證明和計(jì)算.
3.經(jīng)歷探索、猜想、證明的過(guò)程,進(jìn)一步發(fā)展推理論證的能力.
4.能運(yùn)用綜合法證明有關(guān)三角形中位線性質(zhì)的結(jié)論.理解在證明過(guò)程中所運(yùn)用的歸納、類(lèi)比、轉(zhuǎn)化等思想方法.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):掌握和運(yùn)用三角形中位線的性質(zhì).
2.難點(diǎn):三角形中位線性質(zhì)的證明(輔助線的添加方法).
3.難點(diǎn)的突破方法:
(1)本教材三角形中位線的內(nèi)容是由一道例題從而引出其概念和性質(zhì)的,新教材與老教材在這個(gè)知識(shí)的講解順序安排上是不同的,它這種安排是要降低難度,但由于學(xué)生在前面的學(xué)習(xí)中,添加輔助線的練習(xí)很少,因此無(wú)論講解順序怎么安排,證明三角形中位線的性質(zhì)(例1)時(shí),題中輔助線的添加都是一大難點(diǎn),因此教師一定要重點(diǎn)分析輔助線的作法的思考過(guò)程.讓學(xué)生理解:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過(guò)的知識(shí),可添加輔助線構(gòu)造平行四邊形,利用平行四邊形的對(duì)邊平行且相等來(lái)證明結(jié)論成立的思路與方法.
(2)強(qiáng)調(diào)三角形的中位線與中線的區(qū)別:
中位線:中點(diǎn)與中點(diǎn)的連線。中線:頂點(diǎn)與對(duì)邊中點(diǎn)的連線.
(3)要把三角形中位線性質(zhì)的特點(diǎn)、條件、結(jié)論及作用交代清楚:
特點(diǎn):在同一個(gè)題設(shè)下,有兩個(gè)結(jié)論.一個(gè)結(jié)論表明位置關(guān)系,另一個(gè)結(jié)論表明數(shù)量關(guān)系。
條件(題設(shè)):連接兩邊中點(diǎn)得到中位線。
結(jié)論:有兩個(gè),一個(gè)表明中位線與第三邊的位置關(guān)系,另一個(gè)表明中位線與第三邊的數(shù)量關(guān)系(在應(yīng)用時(shí),可根據(jù)需要選用其中的結(jié)論)。
作用:在已知兩邊中點(diǎn)的條件下,證明線段的平行關(guān)系及線段的倍分關(guān)系.
(4)可通過(guò)題組練習(xí),讓學(xué)生掌握其性質(zhì).
三、課堂引入
1.平行四邊形的性質(zhì)。平行四邊形的判定。它們之間有什么聯(lián)系?
2.你能說(shuō)說(shuō)平行四邊形性質(zhì)與判定的用途嗎?
(答:平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等。二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等。三是先判定一個(gè)四邊形是平行四邊形,然后再用平行四邊形的性質(zhì)去解決某些問(wèn)題.)
3.創(chuàng)設(shè)情境
實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
中位線定理教學(xué)設(shè)計(jì)3
“三角形中位線”這一節(jié)中非常重要的內(nèi)容,為今后進(jìn)一步學(xué)習(xí)其他相關(guān)的幾何知識(shí)奠定了基礎(chǔ),下面從五個(gè)方面來(lái)匯報(bào)我是如何鉆研教材、備課和設(shè)計(jì)教學(xué)過(guò)程的。
一、關(guān)于教學(xué)目標(biāo)的確定
根據(jù)“三角形中位線”的地位和作用,我確定了如下三維目標(biāo):
(1)知識(shí)與技能:使學(xué)生理解三角形中位線的概念,掌握三角形中位線定理,同時(shí)要會(huì)用三角形中位線定理進(jìn)行有關(guān)的論證和計(jì)算。
(2)過(guò)程和方法:培養(yǎng)學(xué)生動(dòng)手動(dòng)腦、發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力。
(3)情感、態(tài)度及價(jià)值觀:對(duì)學(xué)生進(jìn)行實(shí)踐認(rèn)識(shí)實(shí)踐的辯證唯物主義認(rèn)識(shí)論教育。
二、關(guān)于教材內(nèi)容的選擇和處理
這節(jié)課所選用的教學(xué)內(nèi)容是:教材中的定義、定理,教材中的例題和習(xí)題,對(duì)定理的推理有所補(bǔ)充,但抽象思維還不夠,由于學(xué)生學(xué)習(xí)知識(shí)還是以現(xiàn)象描述為主要方式,而且學(xué)習(xí)的個(gè)性差異也比較大。因此,本著因材施教的原則,我一方面對(duì)學(xué)生進(jìn)行基本知識(shí)和基本技能的訓(xùn)練,另一方面也能對(duì)個(gè)別程度較好的學(xué)生有所側(cè)重,這與教學(xué)目標(biāo)是相一致的。我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)是三角形中位線定理及其應(yīng)用,這是因?yàn)椋?/p>
1、《新課程標(biāo)準(zhǔn)》明確規(guī)定要求學(xué)生掌握三角形中位線定理能運(yùn)用它進(jìn)行有關(guān)的論證。
2、三角形中位線定理所顯示的特點(diǎn)既有線段的位置關(guān)系又有線段的數(shù)量關(guān)系,因此對(duì)實(shí)際問(wèn)題可進(jìn)行定性和定量的描述:
3、學(xué)習(xí)定理的目的在于應(yīng)用,而三角形中位線定理的應(yīng)用相當(dāng)廣泛,它是幾何學(xué)最最基本、最重要的定理之一。
教學(xué)難點(diǎn)是三角形定理的推證,原因有兩點(diǎn):
1、教材上所有證法實(shí)際上是同一法,這種方法學(xué)生未接觸過(guò)。
2、在補(bǔ)充三角形中位線定理的證法中,還利用了數(shù)學(xué)中的化歸思想,這正是學(xué)生的薄弱環(huán)節(jié)。
由于這兩個(gè)原因,使得三角形中位線定理的推證成為難點(diǎn)。
三、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,我采用的是引導(dǎo)發(fā)現(xiàn)法和直觀演示法。引導(dǎo)發(fā)現(xiàn)法屬于啟發(fā)式教學(xué),它符合辯證唯物主義中內(nèi)因和外因相互作用的觀點(diǎn),符合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過(guò)教師的引導(dǎo)、啟發(fā),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性。另外,在引出三角形中位線定理后,通過(guò)投影儀進(jìn)行教具的直觀演示,使學(xué)生在獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件。這樣做,可以使學(xué)生饒有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性和可接受性原則。
四、關(guān)于學(xué)法的指導(dǎo)
“授人以魚(yú),不如授人以漁”。我體會(huì)到,必須在給學(xué)生傳授知識(shí)的同時(shí),教給他們好的學(xué)習(xí)方法,就是讓他們“會(huì)學(xué)習(xí)”。通過(guò)這節(jié)課的教學(xué)使學(xué)生“會(huì)設(shè)疑”,“會(huì)嘗試”、“學(xué)習(xí)有得必先疑”,只有產(chǎn)生疑問(wèn),學(xué)習(xí)才有動(dòng)力。在教學(xué)過(guò)程中學(xué)生首先要對(duì)“所作的平行線與中位線重合嗎”,“為什么會(huì)重合”,“重合后能得到什么結(jié)論”這些問(wèn)題產(chǎn)生疑問(wèn)。問(wèn)題的解決就使得舊知識(shí)的缺陷,得以彌補(bǔ)。從而培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、解決問(wèn)題的能力。在提出問(wèn)題后,要鼓勵(lì)學(xué)生通過(guò)分析、探索嘗試確定出問(wèn)題解決的辦法。比如在教學(xué)中,推證出三角形中位線定理以后,還應(yīng)再?lài)L試,用其他方法進(jìn)行證明看是否可行。通過(guò)自己的親自嘗試,由錯(cuò)誤到正確。由失敗到成功,通過(guò)嘗試,學(xué)生的思維能力得到了培養(yǎng),當(dāng)然在教學(xué)過(guò)程中學(xué)生還潛移默化地學(xué)到了諸如發(fā)現(xiàn)法、模仿法等。
五、關(guān)于教學(xué)程序的設(shè)計(jì)
經(jīng)過(guò)三角形一邊中點(diǎn)與另一邊平行的直線平分第三邊,從而引出“三角形的中位線”這個(gè)概念同時(shí)板書(shū)課題,并提出問(wèn)題、三角形中位線與三角形中線的區(qū)別?以激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣。緊接著讓學(xué)生作出三角形的所有中位線(3條),不僅可以讓學(xué)生更清楚地認(rèn)識(shí)中位線,而且在不知不覺(jué)中分化了這節(jié)課的難點(diǎn),并為下面找中位線與第三邊的數(shù)量關(guān)系作好了準(zhǔn)備,然后,教師引導(dǎo)學(xué)生自己作圖:先畫(huà)ABC的一條中位線DE,過(guò)AB得中點(diǎn)作BC的平行線。因?yàn)榫€段的中點(diǎn)是唯一的,從而可發(fā)現(xiàn)這條平行線與中位線重合。這就證明三角形中位線與第三邊是平行的,這樣做的同時(shí)突破了這節(jié)課的難點(diǎn),因?yàn)檫@個(gè)平行關(guān)系的證明采用的是“同一法”,學(xué)生初次見(jiàn)到,自然會(huì)產(chǎn)生疑問(wèn),“怎么作了平行線還證平行呢?”通過(guò)學(xué)生自己動(dòng)手作圖,就可以自然地接受了。這時(shí)再回頭看剛才畫(huà)出的圖,利用平行關(guān)系,可得到三角形中位線與第三邊的數(shù)量關(guān)系,這樣通過(guò)“回憶作圖設(shè)疑探索發(fā)現(xiàn)論證”而讓學(xué)生掌握了三角形中位線與第三邊的數(shù)量關(guān)系和位置關(guān)系,而且對(duì)教材中的論證方法有了較深的印象,突破了本節(jié)課的難點(diǎn)。
三角形中位線定理證明出來(lái)了,那么是否就只有這一種證法呢?引導(dǎo)學(xué)生觀察中位線與第三邊的數(shù)量關(guān)系,發(fā)現(xiàn)它實(shí)際上是線段間的倍分問(wèn)題。在這之前,有關(guān)線段間的倍分關(guān)系只有在直角三角形中見(jiàn)過(guò)。能否把它轉(zhuǎn)化成我們熟知的線段間的相等的問(wèn)題?通過(guò)一個(gè)簡(jiǎn)易的自制教具,借助投影儀來(lái)演示,提出“截廠法”和“補(bǔ)短法”這兩種添加輔助性的常用方法,通過(guò)演示讓學(xué)生真正體會(huì)到這兩種方法的"精髓所在。
下面再通過(guò)一個(gè)練習(xí)鞏固定理的掌握,它是緊緊圍繞定理而設(shè)置的。通過(guò)練習(xí)可以看到學(xué)生對(duì)定理掌握的程度,并要求學(xué)生認(rèn)識(shí)三條中位線把三角形化成4個(gè)小三角形之間的全等關(guān)系,面積關(guān)系等。
學(xué)生做完練習(xí),把教材中設(shè)置的例題投影在屏幕上,指導(dǎo)學(xué)生審題,讓學(xué)生根據(jù)題意寫(xiě)出已知、求證,畫(huà)出圖形,再請(qǐng)兩位同學(xué)嘗試著分析證題思路,根據(jù)學(xué)生的分析進(jìn)行補(bǔ)充講解,達(dá)到解決問(wèn)題的目的。證明過(guò)程由學(xué)生書(shū)寫(xiě),然后,由我進(jìn)行規(guī)范化的板書(shū),以培養(yǎng)學(xué)生養(yǎng)成良好的推理習(xí)慣。另外,還配備了一道練習(xí)題,請(qǐng)一位同學(xué)到黑板上來(lái)做,做完后,我簡(jiǎn)單的講評(píng),并要求學(xué)生注意書(shū)寫(xiě)格式,通過(guò)例題和練習(xí)題的配備,使學(xué)生將本節(jié)所學(xué)知識(shí)得以具體化,達(dá)到應(yīng)用的目的,這也是本節(jié)的重點(diǎn)之一。課堂小組我是通過(guò)3個(gè)問(wèn)題的設(shè)置,讓學(xué)生自己理清這節(jié)課的知識(shí)脈絡(luò)。
最后布置作業(yè),所布置的作業(yè)是緊緊圍繞著三角形中位線定理及其應(yīng)用的,通過(guò)作業(yè)反饋本節(jié)課知識(shí)掌握的效果,在課后可以解決學(xué)生尚有疑難的地方。在整個(gè)教學(xué)過(guò)程中,我用“先學(xué)后導(dǎo),當(dāng)堂檢測(cè),分布突破,及時(shí)反饋”的“四維度”課堂教學(xué)模式貫穿全過(guò)程,充分體現(xiàn)了“以三維目標(biāo)為主軸,以學(xué)生自學(xué)為主體,以教師釋疑為主導(dǎo),以當(dāng)堂檢測(cè)為主線”的“四為主”教學(xué)思想,取得了良好的教學(xué)效果。
中位線定理教學(xué)設(shè)計(jì)4
一、教材分析
本節(jié)課是蘇科版八年級(jí)上冊(cè)第三章第6節(jié)第1課時(shí)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了中心對(duì)稱(chēng)圖形及平行四邊形的性質(zhì),在此基礎(chǔ)上來(lái)研究三角形的中位線。此外本節(jié)內(nèi)容在今后的幾何推理、證明中將時(shí)有出現(xiàn),有些問(wèn)題我們用構(gòu)造中位線的方法可以輕松解決。因此,學(xué)好本節(jié)課的內(nèi)容至關(guān)重要。
二、學(xué)情分析
八年級(jí)的學(xué)生好奇心強(qiáng),對(duì)數(shù)學(xué)的求知欲旺盛,學(xué)生已掌握了中心對(duì)稱(chēng)圖形及性質(zhì),也具備一定的操作、歸納、推理和論證能力。基于以上分析,我制定了如下的學(xué)習(xí)目標(biāo):
1、知識(shí)與技能:理解并掌握三角形中位線的概念及性質(zhì),會(huì)利用性質(zhì)定理解決有關(guān)問(wèn)題。
2、過(guò)程與方法:在探索三角形中位線性質(zhì)的過(guò)程,體會(huì)轉(zhuǎn)化的思想方法,進(jìn)一步發(fā)展學(xué)生操作、觀察、歸納、推理能力,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
3、情感態(tài)度價(jià)值觀:通過(guò)真實(shí)的、貼近生活的素材和適當(dāng)?shù)膯?wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和興趣。體會(huì)學(xué)數(shù)學(xué)的快樂(lè),培養(yǎng)運(yùn)用數(shù)學(xué)的思想。
三角形中位線定理是三角形的重要性質(zhì)定理,是解決幾何問(wèn)題的重要依據(jù)。因此,我將本課的教學(xué)重點(diǎn)定為“三角形中位線定理及應(yīng)用”
由于本節(jié)定理證明的關(guān)鍵是恰當(dāng)?shù)匾o助線,構(gòu)造平行四邊形,而學(xué)生對(duì)輔助線的引法、規(guī)律還不得要領(lǐng)。因此,我將本節(jié)課的教學(xué)難點(diǎn)確定為“三角形中位線定理的證明”
三、教法與學(xué)法分析教法:
依據(jù)本節(jié)課的內(nèi)容及學(xué)生認(rèn)知結(jié)構(gòu)的特點(diǎn),我選用了合作探究式的教學(xué)方法,在多媒體的輔助下,讓學(xué)生在活動(dòng)、探究中獲取新知,開(kāi)發(fā)學(xué)生的創(chuàng)造性思維,達(dá)到教學(xué)目標(biāo)。
學(xué)法:
學(xué)生經(jīng)過(guò)自己親身的實(shí)踐活動(dòng),形成自己對(duì)結(jié)論的感知。并掌握探究問(wèn)題的方法,真正地學(xué)會(huì)學(xué)習(xí),達(dá)到“授之以魚(yú),不如授之以漁”的教育目的。
四、教學(xué)過(guò)程:
(一)、創(chuàng)設(shè)情境,引入新課.創(chuàng)設(shè)生活情景
A、B兩棵樹(shù)被一池塘隔開(kāi),如何測(cè)量A、B之間距離呢?
巧用多媒體展示出實(shí)物圖片,吸引學(xué)生的注意,激發(fā)學(xué)習(xí)興趣,提出問(wèn)題,告訴學(xué)生,通過(guò)本節(jié)課對(duì)三角形中位線的學(xué)習(xí),我們就能解決這個(gè)問(wèn)題了,從而引出新課。
(二)、合作交流,探究新知:①給出三角形中位線的概念(板書(shū)):連結(jié)三角形兩邊中點(diǎn)的線段叫三角形的中位線。請(qǐng)學(xué)生自己在座位上做出三角形的中位線。
并提出疑問(wèn):什么是三角形的中線,它與三角形的中位線有什么不同?通過(guò)畫(huà)圖,讓學(xué)生熟悉圖形特征,加強(qiáng)對(duì)三角形中位線的感知,并通過(guò)與已學(xué)的三角形中線概念作比較,加強(qiáng)對(duì)三角形中位線概念的理解加深學(xué)生對(duì)三角形的中線和中位線認(rèn)識(shí),從而培養(yǎng)學(xué)生對(duì)比學(xué)習(xí)的能力。
讓學(xué)生觀察前面畫(huà)出的三角形的中位線,并回答問(wèn)題:一個(gè)三角形共有幾條中位線?三角形中位線與三角形各邊又有怎樣的關(guān)系?
引導(dǎo)學(xué)生猜想,鼓勵(lì)學(xué)生仔細(xì)觀察,說(shuō)出他們自己的猜想。使學(xué)生在學(xué)習(xí)過(guò)程中學(xué)會(huì)猜想。
緊接著,我安排了以下兩個(gè)活動(dòng)。
②活動(dòng)(板書(shū))
我將班級(jí)學(xué)生分為兩種組,每組同座位之間合作,每組分別進(jìn)行一下兩個(gè)活動(dòng)。
A活動(dòng)一(測(cè)量)
1、任意畫(huà)一個(gè)三角形并畫(huà)出它的一條中位線。
2、量出中位線和第三邊的長(zhǎng)度。
3、量出所畫(huà)圖形中一組同位角的度數(shù)。DE4、你發(fā)現(xiàn)了什么?
B
CA活動(dòng)二(裁剪拼接)
1、剪一個(gè)三角形,記作△ABC。DFE。
2、找到邊AB和AC的中點(diǎn)DE連結(jié)DE。
3、沿DE把△ABC剪成兩部分。
4、把分割開(kāi)的兩部分重新拼接。BH。
5、新拼接的四邊形是什么特殊的四邊形?
教師引導(dǎo)學(xué)生通過(guò)動(dòng)手測(cè)量、拼剪、推理檢驗(yàn)自己猜想的合理性。
經(jīng)過(guò)以上的探究和討論,學(xué)生得出三角形的中位線平行于第三邊,并等于它的一半的結(jié)論。
緊接著我將繼續(xù)提問(wèn):“這個(gè)結(jié)論是否具有普遍性,還得從理論上加以證明?!?/p>
為了突破難點(diǎn),借助于我將借助于多媒體和幾何畫(huà)板直觀展示,進(jìn)行完整地證明展示,讓學(xué)生有直觀的認(rèn)識(shí)幾何圖形,證明方法是將問(wèn)題轉(zhuǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南職業(yè)技術(shù)學(xué)院《電視攝像基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度擔(dān)保合同標(biāo)的特性與信用管理3篇
- 二零二五年度新媒體運(yùn)營(yíng)兼職聘任合同范本3篇
- 海南師范大學(xué)《游泳訓(xùn)練理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度小額貸款反擔(dān)保償還服務(wù)合同模板3篇
- 2025年度架工承包合同服務(wù)內(nèi)容擴(kuò)展2篇
- 二零二五年度建筑工程施工現(xiàn)場(chǎng)環(huán)境保護(hù)教育培訓(xùn)合同3篇
- 二零二五年度橋梁欄桿維修與加固服務(wù)合同3篇
- 二零二五年度舊電器買(mǎi)賣(mài)與環(huán)保回收處理合同3篇
- 二零二五年度假山景區(qū)生態(tài)保護(hù)與可持續(xù)發(fā)展承包合同3篇
- 品牌管理第五章品牌體驗(yàn)課件
- 基于CAN通訊的儲(chǔ)能變流器并機(jī)方案及應(yīng)用分析報(bào)告-培訓(xùn)課件
- 外科醫(yī)師手術(shù)技能評(píng)分標(biāo)準(zhǔn)
- 保姆級(jí)別CDH安裝運(yùn)維手冊(cè)
- 菌草技術(shù)及產(chǎn)業(yè)化應(yīng)用課件
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫?。ㄅ两鹕。┲嗅t(yī)護(hù)理常規(guī)
- 果膠項(xiàng)目商業(yè)計(jì)劃書(shū)(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
- 安全資料目錄清單
評(píng)論
0/150
提交評(píng)論