




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省簡陽市重點名校2024屆中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=32.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(
)A. B. C. D.3.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直4.在0.3,﹣3,0,﹣這四個數(shù)中,最大的是()A.0.3 B.﹣3 C.0 D.﹣5.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.6.老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁7.下列各數(shù)中,為無理數(shù)的是()A. B. C. D.8.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:19.如圖,,交于點,平分,交于.若,則
的度數(shù)為()
A.35o B.45o C.55o D.65o10.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結論正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.若實數(shù)a、b、c在數(shù)軸上對應點的位置如圖,則化簡:2|a+c|++3|a﹣b|=_____.12.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關系是_____.13.已知函數(shù)y=-1,給出一下結論:①y的值隨x的增大而減小②此函數(shù)的圖形與x軸的交點為(1,0)③當x>0時,y的值隨x的增大而越來越接近-1④當x≤時,y的取值范圍是y≥1以上結論正確的是_________(填序號)14.飛機著陸后滑行的距離y(單位:m)關于滑行時間t(單位:s)的函數(shù)解析式是y=60t﹣.在飛機著陸滑行中,最后4s滑行的距離是_____m.15.如果兩個相似三角形的面積的比是4:9,那么它們對應的角平分線的比是_____.16.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.17.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后頂點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為.三、解答題(共7小題,滿分69分)18.(10分)為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術、黃梅戲進校園”活動.今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學生人數(shù);(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數(shù);(3)已知A等級的4名學生中有1名男生,3名女生,現(xiàn)從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.19.(5分)解不等式組,并寫出該不等式組的最大整數(shù)解.20.(8分)如圖所示,PB是⊙O的切線,B為切點,圓心O在PC上,∠P=30°,D為弧BC的中點.(1)求證:PB=BC;(2)試判斷四邊形BOCD的形狀,并說明理由.21.(10分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.22.(10分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201823.(12分)某學校為了解學生的課余活動情況,抽樣調查了部分學生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如圖:(1)在這次研究中,一共調查了學生,并請補全折線統(tǒng)計圖;(2)該校共有2200名學生,估計該校愛好閱讀和愛好體育的學生一共有多少人?24.(14分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結構總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】
利用因式分解法解方程即可.【題目詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【題目點撥】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).2、D【解題分析】
一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結果,其中摸出白球的所有等可能結果共有2種,根據(jù)概率公式即可得出答案.【題目詳解】根據(jù)題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【題目點撥】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.3、D【解題分析】
根據(jù)菱形,平行四邊形,正方形的性質定理判斷即可.【題目詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【題目點撥】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.4、A【解題分析】
根據(jù)正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),比較即可【題目詳解】∵-3<-<0<0.3∴最大為0.3故選A.【題目點撥】本題考查實數(shù)比較大小,解題的關鍵是正確理解正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),本題屬于基礎題型.5、D【解題分析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【題目詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【題目點撥】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.6、B【解題分析】
利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質一一判斷即可;【題目詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【題目點撥】本題考查正多邊形的性質、等邊三角形的性質、軸對稱圖形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.7、D【解題分析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無理數(shù),故選D.8、C【解題分析】
求出正六邊形和陰影部分的面積即可解決問題;【題目詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【題目點撥】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.9、D【解題分析】分析:根據(jù)平行線的性質求得∠BEC的度數(shù),再由角平分線的性質即可求得∠CFE的度數(shù).詳解:又∵EF平分∠BEC,.故選D.點睛:本題主要考查了平行線的性質和角平分線的定義,熟知平行線的性質和角平分線的定義是解題的關鍵.10、D【解題分析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當x=2時,y=4a+2b+c<0,當x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.二、填空題(共7小題,每小題3分,滿分21分)11、﹣5a+4b﹣3c.【解題分析】
直接利用數(shù)軸結合二次根式、絕對值的性質化簡得出答案.【題目詳解】由數(shù)軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.【題目點撥】此題主要考查了二次根式以及絕對值的性質,正確化簡是解題關鍵.12、y2<y3<y1【解題分析】
把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【題目詳解】∵y=2x2-4x+c,∴當x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當x=2時,y2=2×22-4×2+c=c,當x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【題目點撥】本題主要考查二次函數(shù)圖象上點的坐標特征,掌握函數(shù)圖象上點的坐標滿足函數(shù)解析式是解題的關鍵.13、②③【解題分析】(1)因為函數(shù)的圖象有兩個分支,在每個分支上y隨x的增大而減小,所以結論①錯誤;(2)由解得:,∴的圖象與x軸的交點為(1,0),故②中結論正確;(3)由可知當x>0時,y的值隨x的增大而越來越接近-1,故③中結論正確;(4)因為在中,當時,,故④中結論錯誤;綜上所述,正確的結論是②③.故答案為:②③.14、24【解題分析】
先利用二次函數(shù)的性質求出飛機滑行20s停止,此時滑行距離為600m,然后再將t=20-4=16代入求得16s時滑行的距離,即可求出最后4s滑行的距離.【題目詳解】y=60t﹣=(t-20)2+600,即飛機著陸后滑行20s時停止,滑行距離為600m,當t=20-4=16時,y=576,600-576=24,即最后4s滑行的距離是24m,故答案為24.【題目點撥】本題考查二次函數(shù)的應用,解題的關鍵是理解題意,熟練應用二次函數(shù)的性質解決問題.15、2:1【解題分析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應的角平分線的比等于相似比,可知它們對應的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質,即相似三角形對應邊的比、對應高線的比、對應角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.16、【解題分析】【分析】連接半徑和弦AE,根據(jù)直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【題目詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【題目點撥】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.17、(10,3)【解題分析】
根據(jù)折疊的性質得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后設EC=x,則EF=DE=8-x,CF=10-6=4,根據(jù)勾股定理列方程求出EC可得點E的坐標.【題目詳解】∵四邊形AOCD為矩形,D的坐標為(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折疊,使D落在BC上的點F處,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10?6=4,設EC=x,則DE=EF=8?x,在Rt△CEF中,EF2=EC2+FC2,即(8?x)2=x2+42,解得x=3,即EC的長為3.∴點E的坐標為(10,3).三、解答題(共7小題,滿分69分)18、(1)50;(2)115.2°;(3)12【解題分析】(1)先求出參加本次比賽的學生人數(shù);(2)由(1)求出的學生人數(shù),即可求出B等級所對應扇形的圓心角度數(shù);(3)首先根據(jù)題意列表或畫出樹狀圖,然后由求得所有等可能的結果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學生有:4÷8%=50(人)(2)B等級的學生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應扇形的圓心角度數(shù)為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結果,選中1名男生和1名女生結果的有6種.∴P(選中1名男生和1名女生)=6“點睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.通過扇形統(tǒng)計圖求出扇形的圓心角度數(shù),應用數(shù)形結合的思想是解決此類題目的關鍵.19、﹣2,﹣1,0【解題分析】分析:先解不等式①,去括號,移項,系數(shù)化為1,再解不等式②,取分母,移項,然后找出不等式組的解集.本題解析:,解不等式①得,x≥?2,解不等式②得,x<1,∴不等式組的解集為?2≤x<1.∴不等式組的最大整數(shù)解為x=0,20、(1)見解析;(2)菱形【解題分析】試題分析:(1)由切線的性質得到∠OBP=90°,進而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角對等邊即可得到結論;(2)由對角線互相垂直平分的四邊形是菱形證明即可.試題解析:證明:(1)∵PB是⊙O的切線,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;(2)連接OD交BC于點M.∵D是弧BC的中點,∴OD垂直平分BC.在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四邊形BOCD是菱形.21、(1)1213;(2)5π;(3)PB的值為10526或【解題分析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質可得出對應邊相等,根據(jù)勾股定理可求出AM的值,即可得出結論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結論;(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質可得對應邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質可得對應邊相等,即可求出PB的值.【題目詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【題目點撥】本題考查了相似三角形與全等三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中式餐廳轉讓合同范本
- 產(chǎn)品配方轉讓合同范例
- 公司代經(jīng)營合同范例
- 2024年重慶市大足區(qū)婦女聯(lián)合會招聘筆試真題
- 化肥品牌轉讓合同范本
- 書宣傳推廣合同范本
- 企業(yè)燃氣合同范本
- 公寓鋪子轉讓合同范本
- 個人首套房屋購買合同范本
- 化工購銷合同范本
- 2023年高血壓指南
- -11體育單招核心 1700 單詞
- 大學課件-工廠化育苗(全套)
- GB/T 22267-2008整孜然
- 魯濱遜漂流記閱讀任務單
- 風險分級管控措施清單(路面工程)
- 最新醫(yī)療安全知識培訓課件
- 物理聽課記錄物理聽課記錄及評析范文(3篇)
- 學校衛(wèi)生監(jiān)督協(xié)管巡查記錄
- 高考必知的自然科學類基礎知識考試題庫(400題)
- 設計思維電子課件
評論
0/150
提交評論