2024屆江蘇省常州市教育會重點中學中考數(shù)學對點突破模擬試卷含解析_第1頁
2024屆江蘇省常州市教育會重點中學中考數(shù)學對點突破模擬試卷含解析_第2頁
2024屆江蘇省常州市教育會重點中學中考數(shù)學對點突破模擬試卷含解析_第3頁
2024屆江蘇省常州市教育會重點中學中考數(shù)學對點突破模擬試卷含解析_第4頁
2024屆江蘇省常州市教育會重點中學中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省常州市教育會重點中學中考數(shù)學對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現(xiàn)已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.2.已知拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,1),其部分圖象如圖所示,下列結論:①拋物線過原點;②a﹣b+c<1;③當x<1時,y隨x增大而增大;④拋物線的頂點坐標為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=1.其中正確的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤3.如圖,四邊形ABCD內接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°4.化簡的結果是()A.1 B. C. D.5.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°6.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.47.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y8.如圖是二次函數(shù)y=ax2+bx+c的圖象,有下列結論:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個9.甲、乙兩船從相距300km的A、B兩地同時出發(fā)相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=10.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據(jù)自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數(shù)占體育社團人數(shù)的D.據(jù)此估計全校1000名八年級同學,選擇科目B的有140人11.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°12.如圖所示的幾何體是一個圓錐,下面有關它的三視圖的結論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.14.甲、乙兩名學生練習打字,甲打135個字所用時間與乙打180個字所用時間相同,已知甲平均每分鐘比乙少打20個字,如果設甲平均每分鐘打字的個數(shù)為x,那么符合題意的方程為:______.15.若一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).16.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..17.若反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象交于點A(﹣2,m)、B(5,n),則3a+b的值等于_____.18.觀察下列一組數(shù):,它們是按一定規(guī)律排列的,那么這一組數(shù)的第n個數(shù)是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經(jīng)統(tǒng)計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問題:扇形統(tǒng)計圖中玉蘭所對的圓心角為,并補全條形統(tǒng)計圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.20.(6分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.21.(6分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當∠B=______度時,以O,D,E,C為頂點的四邊形是正方形.22.(8分)為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.23.(8分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.24.(10分)如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.25.(10分)先化簡,再求值:,其中a為不等式組的整數(shù)解.26.(12分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結EF.(1)當CM:CB=1:4時,求CF的長.(2)設CM=x,CE=y,求y關于x的函數(shù)關系式,并寫出定義域.(3)當△ABM∽△EFN時,求CM的長.27.(12分)為了弘揚學生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經(jīng)過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數(shù)式表示出相等關系中的各個部分,列出方程即可.2、B【解題分析】

由拋物線的對稱軸結合拋物線與x軸的一個交點坐標,可求出另一交點坐標,結論①正確;當x=﹣1時,y>1,得到a﹣b+c>1,結論②錯誤;根據(jù)拋物線的對稱性得到結論③錯誤;將x=2代入二次函數(shù)解析式中結合4a+b+c=1,即可求出拋物線的頂點坐標,結論④正確;根據(jù)拋物線的頂點坐標為(2,b),判斷⑤.【題目詳解】解:①∵拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,1),∴拋物線與x軸的另一交點坐標為(1,1),∴拋物線過原點,結論①正確;②∵當x=﹣1時,y>1,∴a﹣b+c>1,結論②錯誤;③當x<1時,y隨x增大而減小,③錯誤;④拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,且拋物線過原點,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,當x=2時,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴拋物線的頂點坐標為(2,b),結論④正確;⑤∵拋物線的頂點坐標為(2,b),∴ax2+bx+c=b時,b2﹣4ac=1,⑤正確;綜上所述,正確的結論有:①④⑤.故選B.【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.3、B【解題分析】

根據(jù)圓內接四邊形的性質得出∠C的度數(shù),進而利用平行線的性質得出∠ABC的度數(shù),利用角平分線的定義和三角形內角和解答即可.【題目詳解】∵四邊形ABCD內接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【題目點撥】本題考查了圓內接四邊形的性質,關鍵是根據(jù)圓內接四邊形的性質得出∠C的度數(shù).4、A【解題分析】原式=?(x–1)2+=+==1,故選A.5、B【解題分析】

根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質即可解答【題目詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【題目點撥】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等6、B【解題分析】

圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【題目詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【題目點撥】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.7、C【解題分析】

原式去括號合并同類項即可得到結果.【題目詳解】原式,故選:C.【題目點撥】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.8、C【解題分析】

由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.【題目詳解】解:①根據(jù)圖示知,該函數(shù)圖象的開口向上,∴a>1;該函數(shù)圖象交于y軸的負半軸,∴c<1;故①正確;②對稱軸∴∴b<1;故②正確;③根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以,即,故③錯誤④故本選項正確.正確的有3項故選C.【題目點撥】本題考查二次函數(shù)的圖象與系數(shù)的關系.二次項系數(shù)決定了開口方向,一次項系數(shù)和二次項系數(shù)共同決定了對稱軸的位置,常數(shù)項決定了與軸的交點位置.9、A【解題分析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關鍵.10、B【解題分析】

A選項先求出調查的學生人數(shù),再求選科目E的人數(shù)來判定,B選項先求出A科目人數(shù),再利用×360°判定即可,C選項中由D的人數(shù)及總人數(shù)即可判定,D選項利用總人數(shù)乘以樣本中B人數(shù)所占比例即可判定.【題目詳解】解:調查的學生人數(shù)為:12÷24%=50(人),選科目E的人數(shù)為:50×10%=5(人),故A選項正確,選科目A的人數(shù)為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數(shù)為10,總人數(shù)為50人,所以選科目D的人數(shù)占體育社團人數(shù)的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【題目點撥】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準確信息.11、B【解題分析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.12、D【解題分析】

先得到圓錐的三視圖,再根據(jù)中心對稱圖形和軸對稱圖形的定義求解即可.【題目詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;

B、左視圖不是中心對稱圖形,故B錯誤;

C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;

D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.

故選:D.【題目點撥】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】

由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據(jù)相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【題目詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【題目點撥】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.14、【解題分析】

設甲平均每分鐘打x個字,則乙平均每分鐘打(x+20)個字,根據(jù)工作時間=工作總量÷工作效率結合甲打135個字所用時間與乙打180個字所用時間相同,即可得出關于x的分式方程.【題目詳解】∵甲平均每分鐘打x個字,

∴乙平均每分鐘打(x+20)個字,

根據(jù)題意得:,

故答案為.【題目點撥】本題考查了分式方程的應用,找準等量關系,正確列出分式方程是解題的關鍵.15、1【解題分析】

由一次函數(shù)圖象經(jīng)過第一、三、四象限,可知k>0,﹣1<0,在范圍內確定k的值即可.【題目詳解】解:因為一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【題目點撥】根據(jù)一次函數(shù)圖象所經(jīng)過的象限,可確定一次項系數(shù),常數(shù)項的值的符號,從而確定字母k的取值范圍.16、D【解題分析】

利用△DAO與△DEA相似,對應邊成比例即可求解.【題目詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.17、0【解題分析】分析:本題直接把點的坐標代入解析式求得之間的關系式,通過等量代換可得到的值.詳解:分別把A(?2,m)、B(5,n),代入反比例函數(shù)的圖象與一次函數(shù)y=ax+b得?2m=5n,?2a+b=m,5a+b=n,綜合可知5(5a+b)=?2(?2a+b),25a+5b=4a?2b,21a+7b=0,即3a+b=0.故答案為:0.點睛:屬于一次函數(shù)和反比例函數(shù)的綜合題,考查反比例函數(shù)與一次函數(shù)的交點問題,比較基礎.18、【解題分析】試題解析:根據(jù)題意得,這一組數(shù)的第個數(shù)為:故答案為點睛:觀察已知一組數(shù)發(fā)現(xiàn):分子為從1開始的連續(xù)奇數(shù),分母為從2開始的連續(xù)正整數(shù)的平方,寫出第個數(shù)即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)72°,見解析;(2)7280;(3)16【解題分析】

(1)根據(jù)題意列式計算,補全條形統(tǒng)計圖即可;(2)根據(jù)題意列式計算即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.【題目詳解】(1)扇形統(tǒng)計圖中玉蘭所對的圓心角為360°×(1-40%-15%-25%)=72°月季的株數(shù)為2000×90%-380-422-270=728(株),補全條形統(tǒng)計圖如圖所示:(2)月季的成活率為728所以月季成活株數(shù)為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【題目點撥】此題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖的應用,根據(jù)統(tǒng)計圖得出正確信息是解題關鍵.20、(1)證明見解析;(2).【解題分析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質、正切的定義計算即可.【題目詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【題目點撥】本題考查了切線的性質、直角三角形的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.21、(1)見解析;(2)①3;②1.【解題分析】

(1)證出EC為⊙O的切線;由切線長定理得出EC=ED,再求得EB=ED,即可得出結論;(2)①由含30°角的直角三角形的性質得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質即可得出DE;②由等腰三角形的性質,得到∠ODA=∠A=1°,于是∠DOC=90°然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結論.【題目詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當∠B=1°時,四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【題目點撥】本題考查了圓的切線性質、解直角三角形的知識、切線長定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.22、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【解題分析】

(1)根據(jù)直角的性質和三角形的內角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【題目詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形23、(1)證明見解析;(2)1-π.【解題分析】

(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【題目詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【題目點撥】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質和判定等知識點,能求出CF的長是解答此題的關鍵.24、(1)y=﹣x2+2x+1;(2)P(,);(1)當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【解題分析】

(1)先求得點B和點C的坐標,然后將點B和點C的坐標代入拋物線的解析式得到關于b、c的方程,從而可求得b、c的值;(2)作點O關于BC的對稱點O′,則O′(1,1),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點P的坐標;(1)先求得點D的坐標,然后求得CD、BC、BD的長,依據(jù)勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.【題目詳解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).將C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴拋物線的解析式為y=﹣x2+2x+1.(2)如圖所示:作點O關于BC的對稱點O′,則O′(1,1).∵O′與O關于BC對稱,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程為y=P點滿足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴當Q的坐標為(0,0)時,△AQC∽△DCB.如圖所示:連接AC,過點C作CQ⊥AC,交x軸與點Q.∵△ACQ為直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).綜上所述,當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【題目點撥】本題考查了二次函數(shù)的綜合應用,解題的關鍵是掌握待定系數(shù)法求二次函數(shù)的解析式、軸對稱圖形的性質、相似三角形的性質和判定,分類討論的思想.25、,1【解題分析】

先算減法,把除法變成乘法,求出結果,求出不等式組的整數(shù)解,代入求出即可.【題目詳解】解:原式=[﹣]==,∵不等式組的解為<a<5,其整數(shù)解是2,3,4,a不能等于0,2,4,∴a=3,當a=3時,原式==1.【題目點撥】本題考查了解一元一次不等式組、不等式組的整數(shù)解和分式的混合運算和求值,能正確根據(jù)分式的運算法則進行化簡是解此題的關鍵.26、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解題分析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論