版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省南菁中學(xué)中考適應(yīng)性考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定2.如圖,在正方形網(wǎng)格中建立平面直角坐標(biāo)系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,13.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+14.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.5.下列函數(shù)中,y關(guān)于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x26.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.7.當(dāng)ab>0時,y=ax2與y=ax+b的圖象大致是()A. B. C. D.8.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.9.某工廠第二季度的產(chǎn)值比第一季度的產(chǎn)值增長了x%,第三季度的產(chǎn)值又比第二季度的產(chǎn)值增長了x%,則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.下列所給的汽車標(biāo)志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.(2017四川省攀枝花市)若關(guān)于x的分式方程無解,則實(shí)數(shù)m=_______.12.將點(diǎn)P(﹣1,3)繞原點(diǎn)順時針旋轉(zhuǎn)180°后坐標(biāo)變?yōu)開____.13.近年來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點(diǎn).為進(jìn)一步普及環(huán)保和健康知識,我市某校舉行了“建設(shè)宜居成都,關(guān)注環(huán)境保護(hù)”的知識競賽,某班的學(xué)生成績統(tǒng)計(jì)如下:成績(分)60708090100人數(shù)4812115則該辦學(xué)生成績的眾數(shù)和中位數(shù)分別是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分14.分解因式:x2y﹣6xy+9y=_____.15.計(jì)算:的結(jié)果為_____.16.如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,AE是⊙O的切線,A為切點(diǎn),連接BC并延長交AE于點(diǎn)D.若AOC=80°,則ADB的度數(shù)為()A.40°B.50°C.60°D.20°17.已知一個多邊形的每一個內(nèi)角都是,則這個多邊形是_________邊形.三、解答題(共7小題,滿分69分)18.(10分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點(diǎn),AE⊥BD于E,且DB=DA.求證:AE=CD.19.(5分)在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)、的坐標(biāo)分別為,.請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;請作出關(guān)于軸對稱的;點(diǎn)的坐標(biāo)為.的面積為.20.(8分)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).求拋物線的函數(shù)解析式;點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).21.(10分)在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點(diǎn),與軸交于點(diǎn)C,過點(diǎn)A作AH⊥軸,垂足為點(diǎn)H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(,-2).求該反比例函數(shù)和一次函數(shù)的解析式;求△AHO的周長.22.(10分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=kx(x<0)的圖象經(jīng)過點(diǎn)A(-1,6),直線y=mx-2與x軸交于點(diǎn)B(①當(dāng)n=-1時,判斷線段PD與PC的數(shù)量關(guān)系,并說明理由;②若PD≥2PC,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.23.(12分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.24.(14分)如圖,在平面直角坐標(biāo)系中,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上,C點(diǎn)的坐標(biāo)為(1,0),拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.(1)求該拋物線的解析式;(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點(diǎn)P是拋物線上一動點(diǎn),且在直線AB上方,過點(diǎn)P作AB的垂線段,垂足為Q點(diǎn).當(dāng)PQ=時,求P點(diǎn)坐標(biāo).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】
首先求出方程的根,再利用半徑長度,由點(diǎn)O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【題目詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點(diǎn)O到直線l距離是方程x2-4x-12=0的一個根,即為6,
∴點(diǎn)O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【題目點(diǎn)撥】本題考核知識點(diǎn):直線與圓的位置關(guān)系.解題關(guān)鍵點(diǎn):理解直線與圓的位置關(guān)系的判定方法.2、C【解題分析】
根據(jù)A點(diǎn)坐標(biāo)即可建立平面直角坐標(biāo).【題目詳解】解:由A(0,2),B(1,1)可知原點(diǎn)的位置,
建立平面直角坐標(biāo)系,如圖,
∴C(2,-1)
故選:C.【題目點(diǎn)撥】本題考查平面直角坐標(biāo)系,解題的關(guān)鍵是建立直角坐標(biāo)系,本題屬于基礎(chǔ)題型.3、A【解題分析】
根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項(xiàng).【題目詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當(dāng)x<0時,y隨x的增大而減小,錯誤;C.此函數(shù)為反比例函數(shù),在每個象限,y隨x的增大而減小,錯誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯誤.故選A.【題目點(diǎn)撥】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問題的關(guān)鍵.4、C【解題分析】
根據(jù)左視圖是從左面看所得到的圖形進(jìn)行解答即可.【題目詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【題目點(diǎn)撥】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.5、B【解題分析】
判斷一個函數(shù)是不是二次函數(shù),在關(guān)系式是整式的前提下,如果把關(guān)系式化簡整理(去括號、合并同類項(xiàng))后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【題目詳解】A.當(dāng)a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.【題目點(diǎn)撥】本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.6、D【解題分析】
畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【題目詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【題目點(diǎn)撥】此題考查了列表法與樹狀圖法,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、D【解題分析】
∵ab>0,∴a、b同號.當(dāng)a>0,b>0時,拋物線開口向上,頂點(diǎn)在原點(diǎn),一次函數(shù)過一、二、三象限,沒有圖象符合要求;當(dāng)a<0,b<0時,拋物線開口向下,頂點(diǎn)在原點(diǎn),一次函數(shù)過二、三、四象限,B圖象符合要求.故選B.8、A【解題分析】
首先利用勾股定理計(jì)算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【題目詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設(shè)ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.9、D【解題分析】設(shè)第一季度的原產(chǎn)值為a,則第二季度的產(chǎn)值為,第三季度的產(chǎn)值為,則則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了故選D.10、B【解題分析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點(diǎn)睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.二、填空題(共7小題,每小題3分,滿分21分)11、3或1.【解題分析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①當(dāng)整式方程無解時,m﹣3=0,m=3;②當(dāng)整式方程的解為分式方程的增根時,x=1,∴m﹣3=2,m=1.綜上所述:∴m的值為3或1.故答案為3或1.12、(1,﹣3)【解題分析】
畫出平面直角坐標(biāo)系,然后作出點(diǎn)P繞原點(diǎn)O順時針旋轉(zhuǎn)180°的點(diǎn)P′的位置,再根據(jù)平面直角坐標(biāo)系寫出坐標(biāo)即可.【題目詳解】如圖所示:點(diǎn)P(-1,3)繞原點(diǎn)O順時針旋轉(zhuǎn)180°后的對應(yīng)點(diǎn)P′的坐標(biāo)為(1,-3).
故答案是:(1,-3).【題目點(diǎn)撥】考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),作出圖形,利用數(shù)形結(jié)合的思想求解更簡便,形象直觀.13、B.【解題分析】試題分析:眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù),這組數(shù)據(jù)中80出現(xiàn)12次,出現(xiàn)的次數(shù)最多,故這組數(shù)據(jù)的眾數(shù)為80分;中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)).因此這組40個按大小排序的數(shù)據(jù)中,中位數(shù)是按從小到大排列后第20,21個數(shù)的平均數(shù),而第20,21個數(shù)都在80分組,故這組數(shù)據(jù)的中位數(shù)為80分.故選B.考點(diǎn):1.眾數(shù);2.中位數(shù).14、y(x﹣3)2【解題分析】本題考查因式分解.解答:.15、【解題分析】分析:根據(jù)二次根式的性質(zhì)先化簡,再合并同類二次根式即可.詳解:原式=3-5=﹣2.點(diǎn)睛:此題主要考查了二次根式的加減,靈活利用二次根式的化簡是解題關(guān)鍵,比較簡單.16、B.【解題分析】試題分析:根據(jù)AE是⊙O的切線,A為切點(diǎn),AB是⊙O的直徑,可以先得出∠BAD為直角.再由同弧所對的圓周角等于它所對的圓心角的一半,求出∠B,從而得到∠ADB的度數(shù).由題意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故選B.考點(diǎn):圓的基本性質(zhì)、切線的性質(zhì).17、十【解題分析】
先求出每一個外角的度數(shù),再根據(jù)邊數(shù)=360°÷外角的度數(shù)計(jì)算即可.【題目詳解】解:180°﹣144°=36°,360°÷36°=1,∴這個多邊形的邊數(shù)是1.故答案為十.【題目點(diǎn)撥】本題主要考查了多邊形的內(nèi)角與外角的關(guān)系,求出每一個外角的度數(shù)是關(guān)鍵.三、解答題(共7小題,滿分69分)18、證明見解析.【解題分析】
由AD∥BC得∠ADB=∠DBC,根據(jù)已知證明△AED≌△DCB(AAS),即可解題.【題目詳解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于點(diǎn)C,AE⊥BD于點(diǎn)E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【題目點(diǎn)撥】本題考查了三角形全等的判定和性質(zhì),屬于簡單題,證明三角形全等是解題關(guān)鍵.19、(1)見解析;(2)見解析;(3);(4)4.【解題分析】
(1)根據(jù)C點(diǎn)坐標(biāo)確定原點(diǎn)位置,然后作出坐標(biāo)系即可;(2)首先確定A、B、C三點(diǎn)關(guān)于y軸對稱的點(diǎn)的位置,再連接即可;(3)根據(jù)點(diǎn)在坐標(biāo)系中的位置寫出其坐標(biāo)即可(4)利用長方形的面積剪去周圍多余三角形的面積即可.【題目詳解】解:(1)如圖所示:(2)如圖所示:(3)結(jié)合圖形可得:;(4).【題目點(diǎn)撥】此題主要考查了作圖??軸對稱變換,關(guān)鍵是確定組成圖形的關(guān)鍵點(diǎn)的對稱點(diǎn)位置.20、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點(diǎn)坐標(biāo)(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解題分析】
(1)將A,B兩點(diǎn)坐標(biāo)代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據(jù)解析式求出C點(diǎn)坐標(biāo),及頂點(diǎn)E的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,利用勾股定理表示出DC,DE的長.再建立相等關(guān)系式求出m值,進(jìn)而求出D點(diǎn)坐標(biāo);(3)先根據(jù)邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當(dāng)以C、D、P為頂點(diǎn)的三角形與△DOC相似時,根據(jù)對應(yīng)邊不同進(jìn)行分類討論:①當(dāng)OC與CD是對應(yīng)邊時,有比例式,能求出DP的值,又因?yàn)镈E=DC,所以過點(diǎn)P作PG⊥y軸于點(diǎn)G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據(jù)點(diǎn)P在點(diǎn)D的左邊和右邊,得到符合條件的兩個P點(diǎn)坐標(biāo);②當(dāng)OC與DP是對應(yīng)邊時,有比例式,易求出DP,仍過點(diǎn)P作PG⊥y軸于點(diǎn)G,利用比例式求出DG,PG的長度,然后根據(jù)點(diǎn)P在點(diǎn)D的左邊和右邊,得到符合條件的兩個P點(diǎn)坐標(biāo);這樣,直線DE上根據(jù)對應(yīng)邊不同,點(diǎn)P所在位置不同,就得到了符合條件的4個P點(diǎn)坐標(biāo).【題目詳解】解:(1)∵拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數(shù)解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點(diǎn)C的坐標(biāo)為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點(diǎn)E坐標(biāo)為(1,﹣4),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點(diǎn)D的坐標(biāo)為(0,﹣1);(3)∵點(diǎn)C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據(jù)勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當(dāng)OC與CD是對應(yīng)邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點(diǎn)P作PG⊥y軸于點(diǎn)G,則,即,解得DG=1,PG=,當(dāng)點(diǎn)P在點(diǎn)D的左邊時,OG=DG﹣DO=1﹣1=0,所以點(diǎn)P(﹣,0),當(dāng)點(diǎn)P在點(diǎn)D的右邊時,OG=DO+DG=1+1=2,所以,點(diǎn)P(,﹣2);②當(dāng)OC與DP是對應(yīng)邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點(diǎn)P作PG⊥y軸于點(diǎn)G,則,即,解得DG=9,PG=3,當(dāng)點(diǎn)P在點(diǎn)D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點(diǎn)P的坐標(biāo)是(﹣3,8),當(dāng)點(diǎn)P在點(diǎn)D的右邊時,OG=OD+DG=1+9=10,所以,點(diǎn)P的坐標(biāo)是(3,﹣10),綜上所述,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,滿足條件的點(diǎn)P共有4個,其坐標(biāo)分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點(diǎn):1.相似三角形的判定與性質(zhì);2.二次函數(shù)動點(diǎn)問題;3.一次函數(shù)與二次函數(shù)綜合題.21、(1)一次函數(shù)為,反比例函數(shù)為;(2)△AHO的周長為12【解題分析】分析:(1)根據(jù)正切函數(shù)可得AH=4,根據(jù)反比例函數(shù)的特點(diǎn)k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B兩點(diǎn)的坐標(biāo),用待定系數(shù)法便可求出一次函數(shù)的解析式.(2)由(1)知AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數(shù)為∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函數(shù)為(2)△AHO的周長為:3+4+5=12點(diǎn)睛:此題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)及用待定系數(shù)法求一次函數(shù)及反比例函數(shù)的解析式.22、(1)m=-2.(2)①判斷:PD=2PC.理由見解析;②-1≤n<0或n≤-3.【解題分析】
(1)利用代點(diǎn)法可以求出參數(shù)k,m;(2)①當(dāng)n=-1時,即點(diǎn)P的坐標(biāo)為(-1,2),即可求出點(diǎn)②根據(jù)①中的情況,可知n=-1或n=-3再結(jié)合圖像可以確定n的取值范圍;【題目詳解】解:(1)∵函數(shù)y=kx(x<0)的圖象G∴將點(diǎn)A(-1,6)代入y=∵直線y=mx-2與x軸交于點(diǎn)B(∴將點(diǎn)B(-1,0)代入y=mx-2(2)①判斷:PD=2PC.理由如下:當(dāng)n=-1時,點(diǎn)P的坐標(biāo)為(-1∴點(diǎn)C的坐標(biāo)為(-2,∴PC=1,PD=2.∴PD=2PC.②由①可知當(dāng)n=-1時PD=2PC所以由圖像可知,當(dāng)直線y=-2n往下平移的時也符合題意,即0<-2n≤1,得-1≤n<0;當(dāng)n=-3時,點(diǎn)P的坐標(biāo)為(∴點(diǎn)C的坐標(biāo)為(-4,∴PC=1,PD=2∴PD=2PC當(dāng)-2n≥6時,即n≤-3,也符合題意,所以n的取值范圍為:-1≤n<0或n≤-3.【題目點(diǎn)撥】本題主要考查了反比例函數(shù)和一次函數(shù),熟練求反比例函數(shù)和一次函數(shù)解析式的方法、坐標(biāo)與線段長度的轉(zhuǎn)化和數(shù)形結(jié)合思想是解題關(guān)鍵.23、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解題分析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區(qū)道路排水施工方案
- 彩板圍擋施工方案
- 互聯(lián)網(wǎng)金融風(fēng)險評估模型構(gòu)建-深度研究
- 大數(shù)據(jù)與城市智能化規(guī)劃-深度研究
- 智能家居安全防護(hù)-第1篇-深度研究
- 人工智能與傳統(tǒng)文化藝術(shù)傳承-深度研究
- 塑料井施工方案
- 實(shí)時監(jiān)測技術(shù)升級-深度研究
- 地球資源可持續(xù)利用-深度研究
- 智能貨架技術(shù)應(yīng)用分析-深度研究
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級上學(xué)期期末考試化學(xué)試題
- 教育部《中小學(xué)校園食品安全和膳食經(jīng)費(fèi)管理工作指引》知識培訓(xùn)
- 初一到初三英語單詞表2182個帶音標(biāo)打印版
- 2024年秋季人教版七年級上冊生物全冊教學(xué)課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學(xué)及消毒滅菌效果監(jiān)測
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計(jì)6800字(論文)】
- 鐵路項(xiàng)目征地拆遷工作體會課件
- 醫(yī)院死亡報告年終分析報告
- 中國教育史(第四版)全套教學(xué)課件
評論
0/150
提交評論