版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TheimpactofAIon
UKjobsandtraining
November2023
2
Contents
Acknowledgements3
TheimpactofAIonUKjobsandtraining4
Introduction4
Summary5
1Methodology6
1.1SelectionofAIapplications6
1.2Mappinghumanabilitiestojobroles7
1.3AssessingAIapplicationsagainsthumanabilities7
1.4Calculatingoccupationalexposure8
1.5Mappingoccupationstotrainingpathways9
1.6Datasources9
1.7ResearchbyInternationalMonetaryFund10
2OccupationalexposuretoAI11
2.1OccupationsmostexposedtoAI11
2.2ExposuretoAIbyskilllevelofoccupation13
3ExposuretoAIacrossindustriesandgeography16
3.1ExposuretoAIacrossindustry16
3.2ExposuretoAIbygeography17
4ExposuretoAIbyqualification18
4.1Trainingroutes18
4.2Subjectareas19
Annex1:Apprenticeships22
Annex2:Augmentationversussubstitution24
Annex3:ComparisontofindingsfromthePewResearchCenter26
Annex4:Furtheranalysisforoccupationsexposedtolargelanguagemodelling28
ExposuretoLLMacrossindustries28
ExposuretoLLMbygeography30
ExposuretoLLMbyqualification31
Trainingroutes31
Subjectareas32
3
Acknowledgements
TheauthorswouldliketoextendtheirthankstoEdwardFelten,RobertSeamansand
ManavRajwhopublishedtheresourcesfortheirresearch,allowingittobereusedfor
thisreport.TheywouldalsoliketothanktheNationalFoundationforEducationResearchandresearchersattheUniversityofSheffieldandtheUniversityofWarwickformakingavailablethelatestmappingbetweenSOC2020andO*NET.
4
TheimpactofAIonUKjobsandtraining
Introduction
AdvancesinArtificialIntelligence(AI)arewidelyexpectedtohaveaprofoundand
widespreadeffectontheUKeconomyandsociety,thoughtheprecisenatureandspeedofthiseffectisuncertain.Itisestimatedthat10-30%ofjobsareautomatablewithAI
havingthepotentialtoincreaseproductivityandcreatenewhighvaluejobsintheUKeconomy
.1,
2
TheUKeducationsystemandemployerswillneedtoadapttoensurethatindividualsintheworkforcehavetheskillstheyneedtomakethemostofthepotentialbenefits,advancesinAIwillbring.
Thisreport,producedbytheUnitforFutureSkills
3
intheDepartmentforEducation,is
oneofthefirstattemptstoquantifytheimpactofAIontheUKjobmarket(separateto
automationmoregenerally).TheresearchtakesamethodologyfromaUSbasedstudydevelopedbyFelteneta
l4
andappliesitforaUKcontext.Theapproachconsiderstheabilitiesneededtoperformdifferentjobroles,andtheextenttowhichthesecanbeaidedbyaselectionof10commonAIapplications
5.
Themethodologyisextendedfurtherto
considerthelinkbetweentrainingandjobsimpactedbyAI,usinganoveldatasetthatincludesinformationonthequalificationsheldbyyoungpeopleinemployment.
Resultsshouldbeinterpretedwithcaution
TheestimatesofwhichjobsaremoreexposedtoAIarebasedonanumberof
uncertainassumptionssotheresultsshouldbeinterpretedwithcaution.Quantifyingoccupationsintermsofabilitiestoperformajobrolewillneverfullydescribeallrolesandalevelofjudgementisrequiredwheninterpretingtheresults.Further,theextenttowhichoccupationsareexposedtoAIwillchangeduetothepaceatwhichAI
technologiesaredevelopingandasnewdatabecomesavailable.
However,thethemeshighlightedbytheanalysisareexpectedtocontinueandprovideagoodbasisforconsideringtherelativeimpactofAIacrossdifferentpartsofthe
labourmarket.
1
PwC,Willrobotsreallystealourjobs?
2
TheBritishInstituteAcademy,Theimpactofartificialintelligenceonwork
3
.uk/government/groups/unit-for-future-skills
4
FeltenE,RajM,SeamansR(2023)‘HowwillLanguageModelerslikeChatGPTAffectOccupationsand
Industries?’
5Abstractstrategygames;real-timevideogames;imagerecognition;visualquestionanswering;imagegeneration;readingcomprehension;languagemodelling;translation;speechrecognition;instrumentaltrackrecognition.
5
Summary
Thisreportshowstheoccupations,sectorsandareaswithintheUKlabourmarketthatareexpectedtobemostimpactedbyAIandlargelanguagemodelsspecifically.Italsoshowsthequalificationsandtrainingroutesthatmostcommonlyleadtothesehighlyimpactedjobs.Themainfindingsare:
?ProfessionaloccupationsaremoreexposedtoAI,particularlythose
associatedwithmoreclericalworkandacrossfinance,lawandbusiness
managementroles.Thisincludesmanagementconsultantsandbusiness
analysts;accountants;andpsychologists.TeachingoccupationsalsoshowhigherexposuretoAI,wheretheapplicationoflargelanguagemodelsisparticularly
relevant.
?Thefinance&insurancesectorismoreexposedtoAIthananyothersector.TheothersectorsmostexposedtoAIareinformation&communication;
professional,scientific&technical;property;publicadministration&defence;andeducation.
?WorkersinLondonandtheSouthEasthavethehighestexposuretoAI,
reflectingthegreaterconcentrationofprofessionaloccupationsinthoseareas.
WorkersintheNorthEastareinjobswiththeleastexposuretoAIacrosstheUK.However,overallthevariationinexposuretoAIacrossthegeographicalareasismuchsmallerthanthevariationobservedacrossoccupationsorindustries.
?Employeeswithhigherlevelsofachievementaretypicallyinjobsmore
exposedtoAI.Forexample,employeeswithalevel6qualification(equivalenttoadegree)aremorelikelytoworkinajobwithhigherexposuretoAIthan
employeeswithalevel3qualification(equivalenttoA-Levels).
?EmployeeswithqualificationsinaccountingandfinancethroughFurtherEducationorapprenticeships,andeconomicsandmathematicsthrough
HigherEducationaretypicallyinjobsmoreexposedtoAI.Employeeswithqualificationsatlevel3orbelowinbuildingandconstruction,manufacturing
technologies,andtransportationoperationsandmaintenanceareinjobsthatareleastexposedtoAI.
TheanalysismeasurestheexposureofjobstoAI,ratherthandistinguishingwhetherajobwillbeaugmented(aided)orreplaced(substituted)byAI.Researchbythe
InternationalLaborOrganization(ILO
)6
suggeststhatmostjobsandindustriesareonlypartlyexposedtoautomationandaremorelikelytobecomplementedratherthan
substitutedbygenerativeAIlikeChatGPT.Annex2mapsthejobshighlightedinthatreporttotheUKjobmarket,andgenerallyincludecustomerserviceandadministrative
occupations,includingcallandcontactcentreandunclassifiedadministrativeoccupations.
6
GenerativeAIandjobs:Aglobalanalysisofpotentialeffectsonjobquantityandquality()
6
1Methodology
ThemethodologybroadlyfollowstheapproachdescribedbyFelteneta
l7
tocreateanAIOccupationalExposure(AIOE)score,withsomeadaptationstomakeitsuitableforaUKcontext.
1.1SelectionofAIapplications
TheAIOEisconstructedbasedonassumptionsaroundtheuseofadefinedsetof
commonAIapplications.The10AIapplicationsselectedarebasedonthosewheretheElectronicFrontierFoundation(EFF)hasrecordedscientificactivityandprogressinthetechnologyfrom2010onwards.
Table1:AIapplications
AIapplication
Definition
Abstractstrategygames
Theabilitytoplayabstractgamesinvolving
sometimescomplexstrategyandreasoningability,suchaschess,go,orcheckers,atahighlevel.
Real-timevideogames
Theabilitytoplayavarietyofreal-timevideogamesofincreasingcomplexityatahighlevel.
Imagerecognition
Thedeterminationofwhatobjectsarepresentinastillimage.
Visualquestionanswering
Therecognitionofevents,relationships,andcontextfromastillimage.
Imagegeneration
Thecreationofcompleximages.
Readingcomprehension
Theabilitytoanswersimplereasoningquestionsbasedonanunderstandingoftext.
Languagemodelling
Theabilitytomodel,predict,ormimichumanlanguage.
Translation
Thetranslationofwordsortextfromonelanguageintoanother.
Speechrecognition
Therecognitionofspokenlanguageintotext.
Instrumentaltrackrecognition
Therecognitionofinstrumentalmusicaltracks.
ThissetofapplicationsdoesnotcomprehensivelycoverthesetofapplicationsforwhichAIcouldultimatelybeused;however,basedonfurtherworkconductedbyFeltenetalwithfieldexperts,itisbelievedthattheserepresentfundamentalapplicationsofAIthat
7FeltenE,RajM,SeamansR(2023)HowwillLanguageModelerslikeChatGPTAffectOccupationsandIndustries?
7
arelikelytohaveimplicationsfortheworkforceandareapplicationsthatcoverthemostlikelyandmostcommonusesofAI.
1.2Mappinghumanabilitiestojobroles
ThemethodologybyFeltenetalusestheOccupationalInformationNetwork(O*NET)
databaseofoccupationalcharacteristicsandworkerrequirementsinformationacrosstheUSeconomy
.8
ThereiscurrentlynoequivalentdatabaseforUKoccupation
s9
sothe
O*NETdataismappedtotheUKusingacrosswalkbetweenO*NEToccupationsandSOC2010.
TheO*NETsystemuses52distinctabilitiestodescribetheworkplaceactivitiesofeachoccupation,eachwithaseparatescorefor‘level’and‘importance’.Abilitiesaregroupedunderfourcategories:cognitive,physical,psychometerandsensory.Examplesof
abilitiesareoralcomprehension,writtenexpression,mathematicalreasoning,manualdexterity,andstamina
.10
SOC2010wasusedinsteadofSOC2020toalignwithinformationontrainingpathwaysandduetoknownissueswithSOC2020
11
.UpdatingtheanalysistoSOC2020willleadtosmallchangesintheorderingofAIOEscoresbutnottheoverallfindings.
1.3AssessingAIapplicationsagainsthumanabilities
AIapplicationsarelinkedtoworkplaceabilitiesusingacrowd-sourceddatasetcollectedbyFeltenetal,andconstructedusingsurveyresponsesof“gigworkers”fromAmazon'sMechanicalTurk(mTurk)webservice.Thedatahasameasureofapplication-ability
relatednessforeachcombinationboundbetween0and1.Thismeasureofapplication-abilityrelatednessisthenorganisedintoamatrixthatconnectsthe10AIapplicationstothe52O*NEToccupationalabilities.Anability-levelexposureiscalculatedasfollows:
Aij=xij
(1)
Inthisequation,iindexestheAIapplicationandjindexestheoccupationalability.The
ability-levelexposure,A,iscalculatedasthesumofthe10application-abilityrelatednessscores,x,asconstructedusingmTurksurveydata.Bycalculatingtheability-levelAI
8FeltenE,RajM,SeamansR(2023)HowwillLanguageModelerslikeChatGPTAffectOccupationsandIndustries?
9
.uk/government/publications/a-skills-classification-for-the-uk
10
O*NET28.0DatabaseatO*NETResourceCenter()
11
RevisionofmiscodedoccupationaldataintheONSLabourForceSurvey,UK-OfficeforNational
Statistics
8
exposureasasumofalltheAIapplications,allapplicationsareweightedequall
y12.
Thisapproachassumesthateachapplicationhasanindependenteffectonanabilityand
doesnotconsiderinteractionsacrossapplications.
Theestimatesforeachapplicationarethenstandardisedtogivearatingbetween0and1.
1.4Calculatingoccupationalexposure
Foreachoccupation,thevaluesforthelevelandimportanceofeachabilityarecombinedwiththeratingfortherelatednessofeachAIapplicationtocreateanAIOccupational
Exposure(AIOE)score.ThisisdoneoverallforallAIapplications,andindividuallyforeachapplication,e.g.languagemodelling.
∑1Aij×Ljk×Ijk
∑1Ljk×Ijk
AIOEk=
(2)
Inthisequation,iindexestheAIapplication,jindexestheoccupationalability,andk
indexestheoccupation.Aijrepresentstheability-levelexposurescorecalculatedin
Equation1.Theability-levelAIexposureisweightedbytheability'sprevalence(Ljk)andimportance(Ijk)withineachoccupationasmeasuredbyO*NET(mappedtoSOC2010)bymultiplyingtheability-levelAIexposurebytheprevalenceandimportancescoresforthatabilitywithineachoccupation,scaledsothattheyareequallyweighted.These
prevalenceandimportancescores,accountforthepresenceofdifferentabilitieswithinanoccupation.Abilitiesthatareintegraltoanoccupationhavehighprevalenceand
importancescores,whilethosethatareusedlessoftenorarelessvitalhavelower
prevalenceandimportancescores.Anoccupation'saggregateexposuretoAIis
calculatedbysummingthisweightedability-levelAIexposureacrossallabilitiesinanoccupation.Thescoresarethenstandardisedandrankedfrommosttoleastexposed.Thesescoresareappliedtoemploymentcountsacrossoccupationstogiveaggregateexposurescores,forexampleacrossthegeographicalareas.
IntestingtherobustnessoftheirmethodologyFeltenetalfoundevidencethatAIismostlikelytoaffectcognitiveandsensoryabilities,andtheAIOEscoreswerenotsensitivetoexcludinganyoftheapplicationsinthesample.Therefore,anyAIapplicationsthatmayhavebeenexcludedarealsolikelytoberelatedtoasimilarsetofcognitiveandsensoryabilities.
12Feltenetalcarriedoutfurtheranalysiswhichsuggestedthatweightingtheapplicationsisunlikelytohaveameaningfulimpactonthemeasure.
9
1.5Mappingoccupationstotrainingpathways
RelationshipsbetweenoccupationsandtrainingaretakenfromASHE-LEOdata,anewdataresourceavailableintheDepartmentforEducation.Itbringstogetherthe
longitudinaleducationandlabourmarketinformationintheLongitudinalEducation
Outcomesstudy(LEO
)13
withtheinformationonemploymentandearningsintheAnnualSurveyofHoursandEarnings(ASHE)
.14
Therearearound100,000individualsintheASHE-LEOsampleineachyear.This
represents45-75%oftheoverallASHEsample,withlateryearshavingabettermatchratethanearlieryears,andyoungerageshavingabettermatchratethanolderages.ASHE-LEOisusedhereasanapproximatelyrepresentativesampleofearlycareer
employeesinLEO(employeesaged23-30inthe2018-19taxyear).
Thedataisusedtoidentifythetrainingtakenbyemployeesforeachoccupation.Aseachtrainingroutemaybeassociatedwithmultipleoccupations,aweightedaverageis
calculatedtoarriveatanaverageAIOEscore.
1.6Datasources
Name
Description
AIOEdata1
5
Organisedmeasureofapplication-abilityrelatednessthatconnectsthe10EFFAIapplicationstothe52O*NEToccupationalabilities.
AnnualPopulationSurvey
Aresidencebasedlabourmarketsurvey
encompassingpopulation,economicactivity
(employmentandunemployment),economicinactivityandqualifications.
Apprenticeshipdata
ApprenticeshipsstartsinEnglandreportedforan
academicyearbasedondatareturnedbyproviders.
ASHE-LEO
Educationandlabourmarketinformationinthe
LongitudinalEducationOutcomesstudy(LEO)linkedwiththeinformationonemploymentandearningsintheAnnualSurveyofHoursandEarnings(ASHE)
13
ApplytoaccesstheLongitudinalEducationOutcomes(LEO)dataset-GOV.UK(.uk)
14
AnnualSurveyofHoursandEarnings(ASHE)-OfficeforNationalStatistics(.uk)
15FeltenE,RajM,SeamansR(2021)Occupational,industry,andgeographicexposuretoartificialintelligence:Anoveldatasetanditspotentialuses.StrategicManagementJournal42(12):2195–2217
10
1.7ResearchbyInternationalMonetaryFund
TheInternationalMonetaryFund(IMF)haveconstructedacomplementarityadjustedAIoccupationalexposure(C-AIOE)measure,wheretheexposureofoccupationstoAIaremitigatedbytheirpotentialforcomplementarity
.16
AtahighleveltheauthorsofthisstudymakeanadjustmenttotheFeltenetal
methodologyforAIOE
17
tocapturethepotentialtocomplementorsubstituteforlabourineachoccupation.Theythenapplyboththeoriginalmeasureandthecomplementarity
adjustedmeasurestolabourforcemicrodata(usingISCO-08)from6countriesincludingtheUK,withaparticularfocusonemergingmarkets.
Theresearchfindsthattherearesubstantialcross-countrydisparitiesinthebaseline
AIOE,withemergingmarketsgenerallydisplayinglowerexposurelevelsthanadvanced
economies.Thisdisparityismainlyduetodifferentemploymentstructures,with
advancedeconomiescharacterisedbylargerproportionsofhigh-skilloccupationssuchasprofessionalsandmanagers.InlinewiththisreportandasoutlinedbyFeltenetal,
theseprofessionsarethemostexposedtoAIduetotheirhighconcentrationofcognitive-basedtasks.However,becausethosehigh-skilloccupationsalsoshowhigherpotentialforAIcomplementarity,thesecross-countrydisparitiesintermsofpotentiallydisruptiveexposurereduceconsiderablyoncecomplementarityisfactoredin.Nevertheless,
advancedeconomiesremainmoreexposedevenundertheC-AIOEmeasure.Emergingmarketswithalargeshareofagriculturalemployment,remainrelativelylessexposed
underbothmeasures,asoccupationsinthissectorhaveverylowbaselineexposuretoAI.Overall,theresultssuggestthattheimpactofAIonlabourmarketsinadvanced
economiesmaybemore“polarised,”astheiremploymentstructurebetterpositionsthemtobenefitfromgrowthopportunitiesbutalsomakesthemmorevulnerabletolikelyjob
displacements.
16
LaborMarketExposuretoAI:Cross-countryDifferencesandDistributionalImplications()
17
FeltenE,RajM,SeamansR(2023)‘HowwillLanguageModelerslikeChatGPTAffectOccupationsand
Industries?’
11
2OccupationalexposuretoAI
ThereisarangeofUKandinternationalresearchonAIandtheimpactthatitwillhaveonjobsandthelabourmarket.Itisverydifficulttomakeanumericalestimateona
technologywhichisnotyetfullyunderstoodandisevolvingatarapidpace.However,aconsensushasbeguntoemergethat10-30%ofjobsintheUKarehighlyautomatableandcouldbesubjecttosomelevelofautomationoverthenexttwodecades.However,theoverallneteffectonemploymentisunclearbutitisoftenassumedthattherewillbeabroadlyneutrallong-termeffectandjobdisplacementwillbematchedbyjobcreation
.18
ThisanalysisassessestherelativeexposureofUKjob
s19
toAIbyuseofanAI
OccupationalExposure(AIOE)score.TheAIOEscoreallowsjobstoberankedto
showwhichjobsaremoreandlesslikelytobeimpactedbyadvancesinAI,basedontheabilitiesrequiredtoperformthejob.AswellasAIgenerally,asimilarexposurescoreiscreatedtoconsiderlargelanguagemodellingspecificallythroughgenerativeAItoolslikeChatGPTandBard.
TheanalysismeasurestheexposureofjobstoAI,ratherthandistinguishingwhetherajobwillbeaugmented(aided)orreplaced(substituted)byAI.Annex2discussesthepotentialforidentifyingUKjobswhichcouldbefullyautomatedasaresultofAIbasedonresearchfromtheInternationalLaborOrganization(ILO).
2.1OccupationsmostexposedtoAI
Table2
showsalistofthetop20occupationsthataremostexposedtoAI,andtolargelanguagemodellingspecifically.Afulllistofalloccupationsispublishedalongsidethisreport.
Theexposurescoreisbasedonanumberofassumptionsincludingtheabilities
consideredimportantforajobatagivenpointintimesorankingsshouldbe
interpretedwithcaution,howeverthethemeshighlightedbytheanalysisareexpectedtocontinu
e20.
TheoccupationsmostexposedtoAIincludemoreprofessionaloccupations,particularlythoseassociatedwithmoreclericalworkandacrossfinance,lawandbusiness
managementroles.Thisincludesmanagementconsultantsandbusinessanalysts,
accountants,andpsychologists.ThiscomparestotheoccupationsleastexposedtoAI,whichincludesportprofessionals,roofersandsteelerectors.
ThelistofoccupationsmostexposedtolargelanguagemodellingincludesmanyofthesameoccupationsexposedtoAImoregenerally,withbothlistsincludingsolicitors,
18
Willrobotsreallystealourjobs?(pwc.co.uk)
19Definedby4digitstandardisedoccupationclassification(SOC2010)codes.
20Feltenetal(2021)AppendixC:QuantitativeValidationoftheAIOEandRelatedMeasures
12
psychologistsandmanagementconsultantsandbusinessanalysts.Italsoincludesmoreeducationrelatedoccupations,particularlyforpost-16training.Thisalignswithpublic
statementsaroundthepotentialuseofgenerativeAItoolsbyteachers,forexampleinpreparingteachingmaterial.
Table2:OccupationsmostexposedtoAIandlargelanguagemodelling
ExposuretoallAIapplications
Exposuretolargelanguage
modelling
1
Managementconsultantsandbusinessanalysts*
Telephonesalespersons
2
Financialmanagersanddirectors
Solicitors*
3
Chartedandcertifiedaccountants
Psychologists*
4
Psychologists*
Furthereducationteaching
professionals
5
Purchasingmanagersanddirectors
Marketandstreettradersand
assistants
6
Actuaries,economistsandstatisticians
Legalprofessionalsn.e.c.*
7
Businessandfinancialproject
managementprofessionals
Creditcontrollers*
8
Financeandinvestmentanalystsandadvisers
Humanresourceadministration
occupations*
9
Legalprofessionalsn.e.c.*
Publicrelationsprofessionals
10
Businessandrelatedassociate
professionalsn.e.c.
Managementconsultantandbusinessanalysts*
11
Creditcontrollers*
Marketresearchinterviewers
12
Solicitors*
Localgovernmentadministrativeoccupations
13
Civilengineers
Clergy
14
Educationadvisersandschool
inspectors*
Highereducationteaching
professionals
15
Humanresourcesadministrative
occupations*
Collectorsalespersonsandcreditagents
16
Business,researchandadministrativeprofessionalsn.e.c.
Educationadvisersandschool
inspectors*
17
Financialaccountsmanagers
Humanresourcemanagersand
directors
18
Bookkeepers,payrollmanagersandwagesclerks
Nationalgovernmentadministrativeoccupations*
19
Nationalgovernmentadministrativeoccupations*
Vocationalandindustrialtrainersandinstructors
20
Marketingassociateprofessionals
Socialandhumanitiesscientists
*Occupationsthatappearinbothlistsaremarkedwithanasterisk.
Table3
showsalistoftheoccupationsthatareleastexposedtoAI,andtolargelanguagemodellingspecifically.
TheoccupationsleastexposedtoAIandLLMincludemanyofthesameareas,includingmoremanualworkthatistechnicallydifficult,inunpredictableenvironments,andwith
13
lowerwages(reducingtheincentivetoautomate)–withtheexceptionofsportsplayers.Thisincludes:roofers,rooftilersandslaters;elementaryconstructionoccupations;
plasterers;andsteelerectors.
Table3:OccupationsleastexposedtoAIandlargelanguagemodelling
ExposuretoallAIapplications
Exposuretolargelanguage
modelling
1
Sportsplayers*
Fork-lifttruckdrivers*
2
Roofers,rooftilersandslaters*
Roofers,rooftilersandslaters*
3
Elementaryconstructionoccupations*
Steelerectors*
4
Plasterers*
Vehiclevaletersandcleaners*
5
Steelerectors*
Elementaryconstructionoccupations*
6
Vehiclevaletersandcleaners*
Plasterers*
7
Hospitalporters
Metalplateworkers,andriveters*
8
Cleanersanddomestics
Vehiclepainttechnicians
9
Floorersandwalltilers*
Floorersandwalltilers*
10
Metalplateworkers,andriveters
Mobilemachinedriversandoperativesn.e.c.
11
Launderers,drycleanersandpressers*
Launderers,drycleanersand
pressers*
12
Windowcleaners
Largegoodsvehicledrivers
13
Paintersanddecorators
Roadconstructionoperatives*
14
Fork-lifttruckdrivers*
Railconstructionandmaintenanceoperatives
15
Packers,bottlers,cannersandfillers
Industrialcleaningprocess
occupations
16
Gardenersandlandscapegardeners
Elementaryprocessplantoccupationsn.e.c.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024城市基礎(chǔ)設(shè)施建設(shè)項目特許經(jīng)營權(quán)協(xié)議
- 2024年幼兒園教師崗位聘任協(xié)議書模板
- 2024專業(yè)建設(shè)工程項目設(shè)計合同范本專業(yè)版
- 2024家庭保姆雇傭合同樣本
- 2024年先進(jìn)制造業(yè)生產(chǎn)線自動化改造合同
- 2024年度家電行業(yè)C型鋼部件加工合同
- 2024年廢紙回收海運出口協(xié)議
- 2024年商場清潔服務(wù)合同
- 2024年建筑工程設(shè)計與施工一體化合同
- 2024年度智能硬件設(shè)備采購與安裝合同
- 如何有效應(yīng)對學(xué)習(xí)中的困難和挑戰(zhàn)
- 醫(yī)院感染管理培訓(xùn)課件消毒劑的選擇與使用
- 平臺分銷返傭合作協(xié)議
- 中國城市行政代碼
- 低纖維蛋白原血癥的護(hù)理查房
- 數(shù)學(xué)4教材介紹
- 全國大學(xué)生職業(yè)生涯規(guī)劃大賽
- 肩關(guān)節(jié)鏡術(shù)的健康宣教
- 關(guān)于學(xué)校安全保衛(wèi)工作存在的問題及對策
- 2024年廣西鋁業(yè)集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2024年西藏開發(fā)投資集團(tuán)有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論