廣東省深圳市海韻中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
廣東省深圳市海韻中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
廣東省深圳市海韻中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
廣東省深圳市海韻中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
廣東省深圳市海韻中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省深圳市海韻中學(xué)2024屆中考數(shù)學(xué)模擬預(yù)測題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.用半徑為8的半圓圍成一個圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.82.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.3.4的平方根是()A.2 B.±2 C.8 D.±84.在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE,BE分別交于點(diǎn)G、H.∠CBE=∠BAD,有下列結(jié)論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個 B.2個 C.3個 D.4個5.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π6.如圖,矩形OABC有兩邊在坐標(biāo)軸上,點(diǎn)D、E分別為AB、BC的中點(diǎn),反比例函數(shù)y=(x<0)的圖象經(jīng)過點(diǎn)D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.87.如果,那么代數(shù)式的值是()A.6 B.2 C.-2 D.-68.周末小麗從家里出發(fā)騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續(xù)騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是()A.小麗從家到達(dá)公園共用時間20分鐘 B.公園離小麗家的距離為2000米C.小麗在便利店時間為15分鐘 D.便利店離小麗家的距離為1000米9.利用運(yùn)算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199810.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點(diǎn)B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM=()A. B.1 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,四邊形OABC中,AB∥OC,邊OA在x軸的正半軸上,OC在y軸的正半軸上,點(diǎn)B在第一象限內(nèi),點(diǎn)D為AB的中點(diǎn),CD與OB相交于點(diǎn)E,若△BDE、△OCE的面積分別為1和9,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,則k=_______.12.如圖,已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)A,過A點(diǎn)作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.13.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機(jī)摸出一個球,則它是黑球的概率是_____.14.若關(guān)于x的函數(shù)與x軸僅有一個公共點(diǎn),則實數(shù)k的值為.15.已知關(guān)于X的一元二次方程有實數(shù)根,則m的取值范圍是____________________16.當(dāng)a<0,b>0時.化簡:=_____.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中,.18.(8分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.(1)求證:△PFA∽△ABE;(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時,設(shè)PA=x,是否存在實數(shù)x,使得以點(diǎn)P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點(diǎn)時,請直接寫出x滿足的條件:.19.(8分)計算:4cos30°﹣+20180+|1﹣|20.(8分)已知拋物線的開口向上頂點(diǎn)為P(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時,拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值21.(8分)如圖,拋物線交X軸于A、B兩點(diǎn),交Y軸于點(diǎn)C,.(1)求拋物線的解析式;(2)平面內(nèi)是否存在一點(diǎn)P,使以A,B,C,P為頂點(diǎn)的四邊形為平行四邊形,若存在直接寫出P的坐標(biāo),若不存在請說明理由。22.(10分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.23.(12分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運(yùn)動,過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.(1)線段AE=______;(2)設(shè)點(diǎn)P的運(yùn)動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.24.《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【題目詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【題目點(diǎn)撥】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關(guān)鍵是應(yīng)用半圓的弧長=圓錐的底面周長.2、B【解題分析】

根據(jù)俯視圖是從上面看到的圖形解答即可.【題目詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【題目點(diǎn)撥】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.3、B【解題分析】

依據(jù)平方根的定義求解即可.【題目詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【題目點(diǎn)撥】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關(guān)鍵.4、C【解題分析】

根據(jù)題意和圖形,可以判斷各小題中的結(jié)論是否成立,從而可以解答本題.【題目詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點(diǎn)F是AB的中點(diǎn),∴FD=AB,F(xiàn)E=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設(shè)AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯誤,故選:C.【題目點(diǎn)撥】本題考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.5、B【解題分析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【題目點(diǎn)撥】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應(yīng)用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關(guān)鍵.6、B【解題分析】

根據(jù)反比例函數(shù)的圖象和性質(zhì)結(jié)合矩形和三角形面積解答.【題目詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【題目點(diǎn)撥】此題重點(diǎn)考查學(xué)生對反比例函數(shù)圖象和性質(zhì)的理解,熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關(guān)鍵.7、A【解題分析】【分析】將所求代數(shù)式先利用單項式乘多項式法則、平方差公式進(jìn)行展開,然后合并同類項,最后利用整體代入思想進(jìn)行求值即可.【題目詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【題目點(diǎn)撥】本題考查了代數(shù)式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進(jìn)行解題是關(guān)鍵.8、C【解題分析】解:A.小麗從家到達(dá)公園共用時間20分鐘,正確;B.公園離小麗家的距離為2000米,正確;C.小麗在便利店時間為15﹣10=5分鐘,錯誤;D.便利店離小麗家的距離為1000米,正確.故選C.9、B【解題分析】

根據(jù)乘法分配律和有理數(shù)的混合運(yùn)算法則可以解答本題.【題目詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【題目點(diǎn)撥】本題考查了有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)混合運(yùn)算的計算方法.10、D【解題分析】

由旋轉(zhuǎn)的性質(zhì)得到AB=BE,根據(jù)菱形的性質(zhì)得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結(jié)論.【題目詳解】如圖,連接AC交BE于點(diǎn)O,∵將矩形ABCD繞點(diǎn)B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),菱形的性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形的應(yīng)用等,熟練掌握和靈活運(yùn)用相關(guān)的知識是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、16【解題分析】

根據(jù)題意得S△BDE:S△OCE=1:9,故BD:OC=1:3,設(shè)D(a,b)則A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【題目詳解】解:設(shè)D(a,b)則A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的,∴S△OCE=3ba×=9解得ab=8k=a×2b=2ab=2×8=16故答案為16.【題目點(diǎn)撥】此題利用了:①過某個點(diǎn),這個點(diǎn)的坐標(biāo)應(yīng)適合這個函數(shù)解析式;②所給的面積應(yīng)整理為和反比例函數(shù)上的點(diǎn)的坐標(biāo)有關(guān)的形式.12、-1【解題分析】試題解析:設(shè)點(diǎn)A的坐標(biāo)為(m,n),因為點(diǎn)A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數(shù)圖象位于第二、四象限知k<0,∴k=-1.考點(diǎn):反比例外函數(shù)k的幾何意義.13、【解題分析】

用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【題目詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機(jī)摸出一個球,它是黑球的概率為;故答案為.【題目點(diǎn)撥】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、0或-1?!窘忸}分析】由于沒有交待是二次函數(shù),故應(yīng)分兩種情況:當(dāng)k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點(diǎn)。當(dāng)k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點(diǎn),則有兩個相等的實數(shù)根,即。綜上所述,若關(guān)于x的函數(shù)與x軸僅有一個公共點(diǎn),則實數(shù)k的值為0或-1。15、m≤3且m≠2【解題分析】試題解析:∵一元二次方程有實數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.16、【解題分析】分析:按照二次根式的相關(guān)運(yùn)算法則和性質(zhì)進(jìn)行計算即可.詳解:∵,∴.故答案為:.點(diǎn)睛:熟記二次根式的以下性質(zhì)是解答本題的關(guān)鍵:(1);(2)=.三、解答題(共8題,共72分)17、9【解題分析】

根據(jù)完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【題目詳解】當(dāng),時,原式【題目點(diǎn)撥】本題考查整式的化簡求值,解答本題的關(guān)鍵是明確整式化簡求值的方法.18、(1)證明見解析;(2)3或.(3)或0<【解題分析】

(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個角對應(yīng)相等,從而證明三角形相似;

(2)由于對應(yīng)關(guān)系不確定,所以應(yīng)針對不同的對應(yīng)關(guān)系分情況考慮:當(dāng)時,則得到四邊形為矩形,從而求得的值;當(dāng)時,再結(jié)合(1)中的結(jié)論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點(diǎn),運(yùn)用勾股定理和相似三角形的性質(zhì)進(jìn)行求解.

(3)此題首先應(yīng)針對點(diǎn)的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點(diǎn),不一定必須相切,只要保證和線段只有一個公共點(diǎn)即可.故求得相切時的情況和相交,但其中一個交點(diǎn)在線段外的情況即是的取值范圍.【題目詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當(dāng)△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當(dāng)△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點(diǎn)F為AE的中點(diǎn),即∴滿足條件的x的值為3或(3)或【題目點(diǎn)撥】兩組角對應(yīng)相等,兩三角形相似.19、【解題分析】

先代入三角函數(shù)值、化簡二次根式、計算零指數(shù)冪、取絕對值符號,再計算乘法,最后計算加減可得.【題目詳解】原式===【題目點(diǎn)撥】本題主要考查實數(shù)的混合運(yùn)算,解題的關(guān)鍵是熟練掌握實數(shù)的混合運(yùn)算順序和運(yùn)算法則及零指數(shù)冪、絕對值和二次根式的性質(zhì).20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解題分析】

(1)將P(4,-1)代入,可求出解析式

(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.

(3)觀察圖象可得,當(dāng)0≤x≤1時,拋物線上的點(diǎn)到x軸距離的最大值為6,這些點(diǎn)可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進(jìn)行討論即可.【題目詳解】解:(1)由此拋物線頂點(diǎn)為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點(diǎn)C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當(dāng)-1≤x≤2時,y隨著x的增大而減小當(dāng)x=-1時,y=a+(4a+1)+3=4+5a當(dāng)x=2時,y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時,1-4a≤y≤4+5a;(3)當(dāng)a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時,拋物線上的點(diǎn)可能離x軸最遠(yuǎn)分別代入可得,當(dāng)x=0時,y=3當(dāng)x=1時,y=b+4當(dāng)x=-時,y=-+3①當(dāng)一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點(diǎn)由b+4=6解得b=2(舍去);③當(dāng),即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【題目點(diǎn)撥】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對稱軸在不同的范圍內(nèi),拋物線上的點(diǎn)到x軸距離的最大值的點(diǎn)不同.21、(1);(2)(3,-4)或(5,4)或(-5,4)【解題分析】

(1)設(shè)|OA|=1,確定A,B,C三點(diǎn)坐標(biāo),然后用待定系數(shù)法即可完成;(2)先畫出存在的點(diǎn),然后通過平移和計算確定坐標(biāo);【題目詳解】解:(1)設(shè)|OA|=1,則A(-1,0),B(4,0)C(0,4)設(shè)拋物線的解析式為y=ax2+bx+c則有:解得所以函數(shù)解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當(dāng)于C點(diǎn)向右平移了5個單位長度,則坐標(biāo)為(5,4);P2相當(dāng)于C點(diǎn)向左平移了5個單位長度,則坐標(biāo)為(-5,4);設(shè)P3坐標(biāo)為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標(biāo)為(3,-4)【題目點(diǎn)撥】本題主要考查了二次函數(shù)綜合題,此題涉及到待定系數(shù)法求二次函數(shù)解析式,通過作圖確認(rèn)平行四邊形存在,然后通過觀察和計算確定P點(diǎn)坐標(biāo);解題的關(guān)鍵在于規(guī)范作圖,以便于樹形結(jié)合.22、(1)證明見解析(2)【解題分析】

(1)由點(diǎn)G是AE的中點(diǎn),根據(jù)垂徑定理可知OD⊥AE,由等腰三角形的性質(zhì)可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結(jié)論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進(jìn)而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質(zhì)求出FG的長,再由勾股定理即可求出FD的長.【題目詳解】(1)∵點(diǎn)G是AE的中點(diǎn),∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【題目點(diǎn)撥】本題考查了垂徑定理,等腰三角形的性質(zhì),切線的判定,解直角三角形,相似三角形的判定與性質(zhì),勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關(guān)鍵,證明證明△DAG∽△FDG是解(2)的關(guān)鍵.23、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論