版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省蘇州昆山、太倉(cāng)市2024屆中考二模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.82.已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P,若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤3.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM的長(zhǎng)為()A.2 B.2 C. D.44.a(chǎn)、b是實(shí)數(shù),點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a5.設(shè)0<k<2,關(guān)于x的一次函數(shù)y=(k-2)x+2,當(dāng)1≤x≤2時(shí),y的最小值是()A.2k-2B.k-1C.kD.k+16.如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.7.某班組織了針對(duì)全班同學(xué)關(guān)于“你最喜歡的一項(xiàng)體育活動(dòng)”的問卷調(diào)查后,繪制出頻數(shù)分布直方圖,由圖可知,下列結(jié)論正確的是()A.最喜歡籃球的人數(shù)最多 B.最喜歡羽毛球的人數(shù)是最喜歡乒乓球人數(shù)的兩倍C.全班共有50名學(xué)生 D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的10%8.化簡(jiǎn):(a+)(1﹣)的結(jié)果等于()A.a(chǎn)﹣2 B.a(chǎn)+2 C. D.9.老師隨機(jī)抽查了學(xué)生讀課外書冊(cè)數(shù)的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數(shù)是()A.5 B.9 C.15 D.2210.估計(jì)的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間11.下面計(jì)算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a712.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點(diǎn),則BC=()A.6 B.6 C.3 D.3二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知關(guān)于x的方程x2-23x-k=0有兩個(gè)相等的實(shí)數(shù)根,則k的值為__________.14.如圖,已知,D、E分別是邊BA、CA延長(zhǎng)線上的點(diǎn),且如果,,那么AE的長(zhǎng)為______.15.有公共頂點(diǎn)A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點(diǎn)D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°16.用換元法解方程,設(shè)y=,那么原方程化為關(guān)于y的整式方程是_____.17.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點(diǎn)D,點(diǎn)P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.18.若2a﹣b=5,a﹣2b=4,則a﹣b的值為________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.19.(6分)已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).(1)若C是半徑OB中點(diǎn),求的正弦值;(2)若E是弧AB的中點(diǎn),求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時(shí),求CD的長(zhǎng).20.(6分)如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上.(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請(qǐng)你從中選取兩個(gè)條件證明△BEO≌△DFO;(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.21.(6分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.22.(8分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價(jià)為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤(rùn)為W元.直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤(rùn)最大?最大利潤(rùn)是多少元?任務(wù)完成后.統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)工人每天創(chuàng)造的利潤(rùn)為299元.工廠制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)工人某天創(chuàng)造的利潤(rùn)超過該平均值,則該工人當(dāng)天可獲得20元獎(jiǎng)金.請(qǐng)計(jì)算李師傅共可獲得多少元獎(jiǎng)金?23.(8分)今年,我國(guó)海關(guān)總署嚴(yán)厲打擊“洋垃圾”違法行動(dòng),堅(jiān)決把“洋垃圾”拒于國(guó)門之外.如圖,某天我國(guó)一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.(1)求B點(diǎn)到直線CA的距離;(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號(hào))24.(10分)某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項(xiàng)球類運(yùn)動(dòng),每位同學(xué)必須且只能選擇一項(xiàng)球類運(yùn)動(dòng),對(duì)該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:運(yùn)動(dòng)項(xiàng)目
頻數(shù)(人數(shù))
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請(qǐng)根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計(jì)圖中,“排球”所在的扇形的圓心角為度;全校有多少名學(xué)生選擇參加乒乓球運(yùn)動(dòng)?25.(10分)甲、乙兩公司各為“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人數(shù)是甲公司人數(shù)的,問甲、乙兩公司人均捐款各多少元?26.(12分)如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))27.(12分)某數(shù)學(xué)教師為了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)該班部分學(xué)生進(jìn)行了一學(xué)期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應(yīng)分?jǐn)?shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為,圖②中的m值為;(Ⅱ)求樣本中分?jǐn)?shù)值的平均數(shù)、眾數(shù)和中位數(shù).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.2、D【解題分析】
①首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE過點(diǎn)B作BF⊥AE延長(zhǎng)線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯(cuò)誤的;
③利用全等三角形的性質(zhì)和對(duì)頂角相等即可判定③說(shuō)法正確;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計(jì)算即可判定;
⑤連接BD,根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【題目詳解】由邊角邊定理易知△APD≌△AEB,故①正確;
由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,
所以∠BEP=90°,
過B作BF⊥AE,交AE的延長(zhǎng)線于F,則BF的長(zhǎng)是點(diǎn)B到直線AE的距離,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是錯(cuò)誤的;
因?yàn)椤鰽PD≌△AEB,所以∠ADP=∠ABE,而對(duì)頂角相等,所以③是正確的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯(cuò)誤的;
連接BD,則S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
綜上可知,正確的有①③⑤.故選D.【題目點(diǎn)撥】考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強(qiáng),解題時(shí)要求熟練掌握相關(guān)的基礎(chǔ)知識(shí)才能很好解決問題.3、B【解題分析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB
∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點(diǎn)睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.4、A【解題分析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個(gè)象限內(nèi),y隨x的增大而增大,∵點(diǎn)A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.5、A【解題分析】
先根據(jù)0<k<1判斷出k-1的符號(hào),進(jìn)而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結(jié)論.【題目詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當(dāng)x=1時(shí),y最小=1(k-1)+1=1k-1.故選A.【題目點(diǎn)撥】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0,b>0時(shí)函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關(guān)鍵.6、B【解題分析】試題解析:如圖所示:分兩種情況進(jìn)行討論:當(dāng)時(shí),拋物線經(jīng)過點(diǎn)時(shí),拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當(dāng)時(shí),拋物線經(jīng)過點(diǎn)時(shí),拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點(diǎn)睛:二次函數(shù)二次項(xiàng)系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對(duì)值越大,開口越小.7、C【解題分析】【分析】觀察直方圖,根據(jù)直方圖中提供的數(shù)據(jù)逐項(xiàng)進(jìn)行分析即可得.【題目詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數(shù)最多,故A選項(xiàng)錯(cuò)誤;B.最喜歡羽毛球的人數(shù)是最喜歡田徑人數(shù)的兩倍,故B選項(xiàng)錯(cuò)誤;C.全班共有12+20+8+4+6=50名學(xué)生,故C選項(xiàng)正確;D.最喜歡田徑的人數(shù)占總?cè)藬?shù)的=8%,故D選項(xiàng)錯(cuò)誤,故選C.【題目點(diǎn)撥】本題考查了頻數(shù)分布直方圖,從直方圖中得到必要的信息進(jìn)行解題是關(guān)鍵.8、B【解題分析】
解:原式====.故選B.考點(diǎn):分式的混合運(yùn)算.9、B【解題分析】
條形統(tǒng)計(jì)圖是用線段長(zhǎng)度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長(zhǎng)短不同的矩形直條,然后按順序把這些直條排列起來(lái).扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù).通過扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.用整個(gè)圓的面積表示總數(shù)(單位1),用圓的扇形面積表示各部分占總數(shù)的百分?jǐn)?shù).【題目詳解】課外書總?cè)藬?shù):6÷25%=24(人),看5冊(cè)的人數(shù):24﹣5﹣6﹣4=9(人),故選B.【題目點(diǎn)撥】本題考查了統(tǒng)計(jì)圖與概率,熟練掌握條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖是解題的關(guān)鍵.10、D【解題分析】
尋找小于26的最大平方數(shù)和大于26的最小平方數(shù)即可.【題目詳解】解:小于26的最大平方數(shù)為25,大于26的最小平方數(shù)為36,故,即:,故選擇D.【題目點(diǎn)撥】本題考查了二次根式的相關(guān)定義.11、D【解題分析】
直接利用完全平方公式以及合并同類項(xiàng)法則、積的乘方運(yùn)算法則分別化簡(jiǎn)得出答案.【題目詳解】A.
(a+b)2=a2+b2+2ab,故此選項(xiàng)錯(cuò)誤;B.
3a+4a=7a,故此選項(xiàng)錯(cuò)誤;C.
(ab)3=a3b3,故此選項(xiàng)錯(cuò)誤;D.
a2a5=a7,正確。故選:D.【題目點(diǎn)撥】本題考查了冪的乘方與積的乘方,合并同類項(xiàng),同底數(shù)冪的乘法,完全平方公式,解題的關(guān)鍵是掌握它們的概念進(jìn)行求解.12、A【解題分析】試題分析:根據(jù)垂徑定理先求BC一半的長(zhǎng),再求BC的長(zhǎng).解:如圖所示,設(shè)OA與BC相交于D點(diǎn).∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點(diǎn)睛:本題主要考查垂徑定理和勾股定理.解題的關(guān)鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎(chǔ).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-3【解題分析】試題解析:根據(jù)題意得:△=(23)2-4×1×(-k)=0,即12+4k=0,
解得:k=-3,14、【解題分析】
由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計(jì)算AE的長(zhǎng).【題目詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【題目點(diǎn)撥】本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.15、B【解題分析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.16、6y2-5y+2=0【解題分析】
根據(jù)y=,將方程變形即可.【題目詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【題目點(diǎn)撥】此題考查了換元法解分式方程,利用了整體的思想,將方程進(jìn)行適當(dāng)?shù)淖冃问墙獗绢}的關(guān)鍵.17、6【解題分析】
根據(jù)等角對(duì)等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48
,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【題目詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB
,∴AD=BD=CD=AB,∵AP2-PB2=48
,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【題目點(diǎn)撥】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于利用等腰三角形的“三線合一18、1.【解題分析】試題分析:把這兩個(gè)方程相加可得1a-1b=9,兩邊同時(shí)除以1可得a-b=1.考點(diǎn):整體思想.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.19、(2);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.【解題分析】
(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時(shí),判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時(shí),判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點(diǎn)D和點(diǎn)O重合,即可得出結(jié)論.【題目詳解】(2)∵C是半徑OB中點(diǎn),∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點(diǎn),∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當(dāng)CD=CE時(shí).∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長(zhǎng)為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當(dāng)CD=DE時(shí).∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點(diǎn)D和點(diǎn)O重合,此時(shí),點(diǎn)C和點(diǎn)B重合,∴CD=2.綜上所述:當(dāng)△DCE是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.【題目點(diǎn)撥】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質(zhì),菱形的判定和性質(zhì),銳角三角函數(shù),作出輔助線是解答本題的關(guān)鍵.20、(1)見解析;(2)見解析.【解題分析】試題分析:(1)選?、佗?,利用ASA判定△BEO≌△DFO;也可選?、冖?,利用AAS判定△BEO≌△DFO;還可選?、佗?,利用SAS判定△BEO≌△DFO;(2)根據(jù)△BEO≌△DFO可得EO=FO,BO=DO,再根據(jù)等式的性質(zhì)可得AO=CO,根據(jù)兩條對(duì)角線互相平分的四邊形是平行四邊形可得結(jié)論.試題解析:證明:(1)選?、佗?,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四邊形ABCD是平行四邊形.點(diǎn)睛:此題主要考查了平行四邊形的判定,以及全等三角形的判定,關(guān)鍵是掌握兩條對(duì)角線互相平分的四邊形是平行四邊形.21、(1)見解析(2)2【解題分析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.22、(1)W=;(2)李師傅第8天創(chuàng)造的利潤(rùn)最大,最大利潤(rùn)是324元;(3)李師傅共可獲得160元獎(jiǎng)金.【解題分析】
(1)根據(jù)題意和表格中的數(shù)據(jù)可以求得p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:(2)根據(jù)題意和題目中的函數(shù)表達(dá)式可以解答本題;(3)根據(jù)(2)中的結(jié)果和不等式的性質(zhì)可以解答本題.【題目詳解】(1)設(shè)p與x之間的函數(shù)關(guān)系式為p=kx+b,則有,解得,,即p與x的函數(shù)關(guān)系式為p=0.5x+7(1≤x≤15,x為整數(shù)),當(dāng)1≤x<10時(shí),W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,當(dāng)10≤x≤15時(shí),W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)當(dāng)1≤x<10時(shí),W=﹣x2+16x+260=﹣(x﹣8)2+324,∴當(dāng)x=8時(shí),W取得最大值,此時(shí)W=324,當(dāng)10≤x≤15時(shí),W=﹣20x+520,∴當(dāng)x=10時(shí),W取得最大值,此時(shí)W=320,∵324>320,∴李師傅第8天創(chuàng)造的利潤(rùn)最大,最大利潤(rùn)是324元;(3)當(dāng)1≤x<10時(shí),令﹣x2+16x+260=299,得x1=3,x2=13,當(dāng)W>299時(shí),3<x<13,∵1≤x<10,∴3<x<10,當(dāng)10≤x≤15時(shí),令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李師傅獲得獎(jiǎng)金的的天數(shù)是第4天到第11天,李師傅共獲得獎(jiǎng)金為:20×(11﹣3)=160(元),即李師傅共可獲得160元獎(jiǎng)金.【題目點(diǎn)撥】本題考查了一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用等,明確題意,找出各個(gè)量之間的關(guān)系,確立函數(shù)解析式,利用函數(shù)的性質(zhì)進(jìn)行解答是關(guān)鍵.23、(1)B點(diǎn)到直線CA的距離是75海里;(2)執(zhí)法船從A到D航行了(75﹣25)海里.【解題分析】
(1)過點(diǎn)B作BH⊥CA交CA的延長(zhǎng)線于點(diǎn)H,根據(jù)三角函數(shù)可求BH的長(zhǎng);(2)根據(jù)勾股定理可求DH,在Rt△ABH中,根據(jù)三角函數(shù)可求AH,進(jìn)一步得到AD的長(zhǎng).【題目詳解】解:(1)過點(diǎn)B作BH⊥CA交CA的延長(zhǎng)線于點(diǎn)H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點(diǎn)到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執(zhí)法船從A到D航行了(75﹣25)海里.【題目點(diǎn)撥】本題主要考查了勾股定理的應(yīng)用,解直角三角形的應(yīng)用-方向角問題.能合理構(gòu)造直角三角形,并利用方向角求得三角形內(nèi)角的大小是解決此題的關(guān)鍵
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽(yáng)理工大學(xué)《面向?qū)ο蟪绦蛟O(shè)計(jì)》2022-2023學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《機(jī)械工程控制基礎(chǔ)》2022-2023學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《粉體材料科學(xué)基礎(chǔ)》2022-2023學(xué)年第一學(xué)期期末試卷
- 關(guān)于空氣維保合同的情況說(shuō)明
- 國(guó)企購(gòu)車合同范本
- 合同 能源管理方式
- 合同法937條原文內(nèi)容
- 2024不銹鋼制作合同范本產(chǎn)品制作合同范本
- 2024小區(qū)簡(jiǎn)易房屋裝修合同范本
- 2024家庭裝修合同補(bǔ)充協(xié)議書范本
- 烘干設(shè)備購(gòu)銷合同模板
- 2024年國(guó)際貿(mào)易傭金居間服務(wù)協(xié)議
- 2024年醫(yī)院食堂承包合同參考模板(五篇)
- 廣東省深圳實(shí)驗(yàn)學(xué)校中學(xué)部2024-2025學(xué)年七年級(jí)數(shù)學(xué)上學(xué)期期中考試試卷
- 江蘇省南京市六校2024-2025學(xué)年高一上學(xué)期期中聯(lián)合調(diào)研考試 數(shù)學(xué) 含答案
- 老師實(shí)習(xí)報(bào)告(6篇)
- 電器集團(tuán)外協(xié)、外購(gòu)件檢驗(yàn)作業(yè)指導(dǎo)書
- 國(guó)開學(xué)習(xí)網(wǎng)《幼兒園課程與活動(dòng)設(shè)計(jì)》期末大作業(yè)答案(第7套)
- 第25課《劉姥姥進(jìn)大觀園》(導(dǎo)學(xué)案)(學(xué)生版) 2024-2025學(xué)年九年級(jí)語(yǔ)文上冊(cè)同步課堂(統(tǒng)編版)(學(xué)生專用)
- 美容院翻新合同協(xié)議書
- 嵌入式課程設(shè)計(jì)實(shí)訓(xùn)
評(píng)論
0/150
提交評(píng)論