新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-2 利用導(dǎo)數(shù)解決單調(diào)性中求參數(shù)問題(選填)(含解析)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-2 利用導(dǎo)數(shù)解決單調(diào)性中求參數(shù)問題(選填)(含解析)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-2 利用導(dǎo)數(shù)解決單調(diào)性中求參數(shù)問題(選填)(含解析)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-2 利用導(dǎo)數(shù)解決單調(diào)性中求參數(shù)問題(選填)(含解析)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)考點(diǎn)歸納與演練專題3-2 利用導(dǎo)數(shù)解決單調(diào)性中求參數(shù)問題(選填)(含解析)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題3-2利用導(dǎo)數(shù)解決單調(diào)性中求參數(shù)問題(選填)TOC\o"1-1"\h\u 1題型一:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào) 1題型二:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間 6題型三:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào) 8題型四:已知函數(shù)SKIPIF1<0的單調(diào)區(qū)間恰為SKIPIF1<0 11題型五:已知函數(shù)SKIPIF1<0有三個單調(diào)區(qū)間 13 16題型一:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)【典型例題】例題1.(2022·重慶市第七中學(xué)校高二階段練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意得,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.故選:A例題2.(2022·全國·高二課時練習(xí))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由SKIPIF1<0得SKIPIF1<0,由于函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即得SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0,故選:D.例題3.(2022·陜西咸陽中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,若對SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為對SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,所以對SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0為減函數(shù).SKIPIF1<0,等價于SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0恒成立.設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為減函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為增函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:C【提分秘籍】已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)①已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減SKIPIF1<0SKIPIF1<0,SKIPIF1<0恒成立.注:已知單調(diào)性,等價條件中的不等式含等號.【變式演練】1.(2021·四川·宜賓市敘州區(qū)第一中學(xué)校高二階段練習(xí)(文))若SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意可得:當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上單增,所以SKIPIF1<0在SKIPIF1<0上單增,所以SKIPIF1<0,所以SKIPIF1<0.故選:D2.(2022·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0時恒成立,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0SKIPIF1<0在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,故SKIPIF1<0.故選:B.3.(2022·陜西省寶雞市長嶺中學(xué)高二期中(理))若函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0對SKIPIF1<0恒成立,所以SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0,即SKIPIF1<0.故選:A.4.(2022·山西臨汾·高三期中)設(shè)函數(shù)SKIPIF1<0,若對任意SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題設(shè)SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,而SKIPIF1<0在SKIPIF1<0上值域為SKIPIF1<0,所以SKIPIF1<0.故選:A題型二:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間【典型例題】例題1.(2022·江西·上高二中高二階段練習(xí)(文))若函數(shù)SKIPIF1<0存在單調(diào)遞減區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且其導(dǎo)數(shù)為SKIPIF1<0.由SKIPIF1<0存在單調(diào)遞減區(qū)間知SKIPIF1<0在SKIPIF1<0上有解,即SKIPIF1<0有解.因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0.要使SKIPIF1<0有解,只需要SKIPIF1<0的最小值小于SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.例題2.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0存在單調(diào)遞增區(qū)間,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,∴SKIPIF1<0在x∈SKIPIF1<0上有解,即ax+SKIPIF1<00在x∈SKIPIF1<0上有解,即aSKIPIF1<0在x∈SKIPIF1<0上有解.令g(x)SKIPIF1<0,則g′(x)SKIPIF1<0,∴g(x)SKIPIF1<0在(0,e)上單調(diào)遞減,在(e,+∞)上單調(diào)遞增,∴g(x)SKIPIF1<0的最小值為g(e)=SKIPIF1<0,∴a>SKIPIF1<0.故選:B.【提分秘籍】已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)區(qū)間①已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間SKIPIF1<0SKIPIF1<0,SKIPIF1<0有解.②已知SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)減區(qū)間SKIPIF1<0SKIPIF1<0,SKIPIF1<0有解.【變式演練】1.(2022·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0存在單調(diào)遞減區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為函數(shù)SKIPIF1<0在SKIPIF1<0存在單調(diào)遞減區(qū)間,故SKIPIF1<0在區(qū)間SKIPIF1<0上有解.即SKIPIF1<0在區(qū)間SKIPIF1<0有解.即存在SKIPIF1<0,使得SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.且SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0,故要滿足題意,只需SKIPIF1<0即可,解得SKIPIF1<0.故選:SKIPIF1<0.2.(2022·福建·福州黎明中學(xué)高三階段練習(xí))若函數(shù)f(x)=x2-4ex-ax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍為__________.【答案】SKIPIF1<0【詳解】因為f(x)=x2-4ex-ax,所以f′(x)=2x-4ex-a.由題意,f′(x)=2x-4ex-a>0,即a<2x-4ex有解.令g(x)=2x-4ex,則g′(x)=2-4ex.令g′(x)=0,解得x=-ln2.當(dāng)x∈(-∞,-ln2)時,函數(shù)g(x)=2x-4ex單調(diào)遞增;當(dāng)x∈(-ln2,+∞)時,函數(shù)g(x)=2x-4ex單調(diào)遞減.所以當(dāng)x=-ln2時,g(x)=2x-4ex取得最大值-2-2ln2,所以a<-2-2ln2.題型三:已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)【典型例題】例題1.(2022·陜西·蒲城縣蒲城中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】依題意SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有零點(diǎn),令SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0單調(diào)遞增,又由SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,所以,SKIPIF1<0的取值范圍SKIPIF1<0故選:A例題2.(2022·廣西河池·高二階段練習(xí)(理))若函數(shù)SKIPIF1<0在定義域內(nèi)的一個子區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題意得,函數(shù)定義域為SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,解得在定義域內(nèi)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,函數(shù)在區(qū)間SKIPIF1<0內(nèi)不單調(diào),所以SKIPIF1<0,解得SKIPIF1<0,又因為SKIPIF1<0,得SKIPIF1<0,綜上SKIPIF1<0,故選:D.【提分秘籍】已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0(其中SKIPIF1<0為變號零點(diǎn))【變式演練】1.(2022·安徽·合肥一中高二階段練習(xí))若函數(shù)SKIPIF1<0在其定義域上不單調(diào),則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0,因為函數(shù)SKIPIF1<0在其定義域上不單調(diào),即SKIPIF1<0有變號零點(diǎn),結(jié)合二次函數(shù)的性質(zhì),可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.2.(2022·四川省資陽中學(xué)高二期中(理))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,①當(dāng)SKIPIF1<0時函數(shù)SKIPIF1<0單調(diào)遞增,不合題意;②當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的極值點(diǎn)為SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0不單調(diào),必有SKIPIF1<0,解得SKIPIF1<0.故選:B.3.(2022·江西·金溪一中高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】∵SKIPIF1<0,SKIPIF1<0在SKIPIF1<0內(nèi)不是單調(diào)函數(shù),故SKIPIF1<0在SKIPIF1<0存在變號零點(diǎn),即SKIPIF1<0在SKIPIF1<0存在零點(diǎn),∴SKIPIF1<0.故選:A.4.(2022·上海大學(xué)市北附屬中學(xué)高一期中)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍________.【答案】SKIPIF1<0【詳解】解:因為SKIPIF1<0,所以函數(shù)的對稱軸為SKIPIF1<0,因為函數(shù)在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0題型四:已知函數(shù)SKIPIF1<0的單調(diào)區(qū)間恰為SKIPIF1<0【典型例題】例題1.(2021·四川省成都市玉林中學(xué)高二期中(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,則函數(shù)SKIPIF1<0在SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,SKIPIF1<0符合題意,又SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0的值域是SKIPIF1<0,SKIPIF1<0.故選:A.例題2.(2022·全國·高二課時練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上為增函數(shù),在SKIPIF1<0上為減函數(shù),則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0,則SKIPIF1<0,由題意可知,SKIPIF1<0有兩個不等的零點(diǎn),設(shè)為SKIPIF1<0、SKIPIF1<0且SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上為增函數(shù),在SKIPIF1<0上為減函數(shù),則SKIPIF1<0、SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.故選:B.【變式演練】1.(2022·全國·高二課時練習(xí))已知函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:由題可得SKIPIF1<0,則SKIPIF1<0的解集為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,故選:C.2.(2022·福建漳州·高二期末)已知函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是__________.【答案】SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,則不等式SKIPIF1<0的解集為SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的兩根,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0;所以不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0題型五:已知函數(shù)SKIPIF1<0有三個單調(diào)區(qū)間【典型例題】例題1.(2019·河北省隆化存瑞中學(xué)高三階段練習(xí)(理))若函數(shù)SKIPIF1<0恰好有三個單調(diào)區(qū)間,則實數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【詳解】因為函數(shù)SKIPIF1<0恰好有三個單調(diào)區(qū)間,所以SKIPIF1<0有兩個不等零點(diǎn),則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選D.例題2.(2019·江蘇鹽城·一模)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0存在三個單調(diào)區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【詳解】SKIPIF1<0函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0存在三個單調(diào)區(qū)間即SKIPIF1<00有兩個不等實根,即SKIPIF1<0有兩個不等實根,轉(zhuǎn)化為y=a與y=SKIPIF1<0的圖像有兩個不同的交點(diǎn)SKIPIF1<0令SKIPIF1<0,即x=SKIPIF1<0,即y=SKIPIF1<0在(0,SKIPIF1<0)上單調(diào)遞減,在(SKIPIF1<0,+∞)上單調(diào)遞增.ymin=-SKIPIF1<0,當(dāng)x∈(0,SKIPIF1<0)時,y<0,所以a的范圍為SKIPIF1<0【提分秘籍】已知函數(shù)SKIPIF1<0有三個單調(diào)區(qū)間SKIPIF1<0SKIPIF1<0有兩個不同的實數(shù)根.【變式演練】1.(2022·寧夏·永寧縣文昌中學(xué)高三期末(文))若函數(shù)SKIPIF1<0有三個單調(diào)區(qū)間,則SKIPIF1<0的取值范圍是________________.【答案】b>0【詳解】試題分析:由已知可得SKIPIF1<0在SKIPIF1<0上有不等實根SKIPIF1<0.2.(2022·江西省信豐中學(xué)高二階段練習(xí)(文))若函數(shù)SKIPIF1<0在定義域SKIPIF1<0上恰有三個單調(diào)區(qū)間,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為函數(shù)SKIPIF1<0在定義域SKIPIF1<0上恰有三個單調(diào)區(qū)間,所以其導(dǎo)函數(shù)在定義域SKIPIF1<0上有兩個不同的零點(diǎn),由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,所以只需SKIPIF1<0,方程SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根.故選:A.3.(2016·黑龍江雙鴨山·高二階段練習(xí))若函數(shù)恰有三個單調(diào)區(qū)間,則實數(shù)的取值范圍為A. B.C. D.【答案】D【詳解】試題分析:由題意得,函數(shù)的導(dǎo)數(shù)為,因為函數(shù)恰有三個單調(diào)區(qū)間,所以且有兩個根,即,解得且,故選D.4.(2020·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0恰有三個單調(diào)區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0或SKIPIF1<0【詳解】分析:求出函數(shù)的導(dǎo)函數(shù),利用導(dǎo)數(shù)有兩個不同的零點(diǎn),說明函數(shù)恰好有三個單調(diào)區(qū)間,從而求出a的取值范圍.詳解:∵函數(shù)SKIPIF1<0,∴f′(x)=3x2+6ax+SKIPIF1<0,由函數(shù)f(x)恰好有三個單調(diào)區(qū)間,得f′(x)有兩個不相等的零點(diǎn),∴3x2+6ax+SKIPIF1<0=0滿足:△=SKIPIF1<0﹣SKIPIF1<0>0,解得SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.一、單選題1.(2019·四川自貢·高二期末(理))函數(shù)SKIPIF1<0恰有SKIPIF1<0個單調(diào)區(qū)間的必要不充分條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0,函數(shù)SKIPIF1<0有兩個單調(diào)區(qū)間;當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,此時函數(shù)SKIPIF1<0恰有3個單調(diào)區(qū)間;當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,此時函數(shù)SKIPIF1<0恰有3個單調(diào)區(qū)間.SKIPIF1<0綜上所述SKIPIF1<0是函數(shù)SKIPIF1<0恰有3個單調(diào)區(qū)間的充要條件,分析可得SKIPIF1<0是其必要不充分條件.故選:SKIPIF1<0.2.(2019·河北省隆化存瑞中學(xué)高三階段練習(xí)(理))若函數(shù)SKIPIF1<0恰好有三個單調(diào)區(qū)間,則實數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【詳解】因為函數(shù)SKIPIF1<0恰好有三個單調(diào)區(qū)間,所以SKIPIF1<0有兩個不等零點(diǎn),則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選D.3.(2022·河南·駐馬店市第二高級中學(xué)高三階段練習(xí)(文))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,因為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B4.(2021·江蘇·張家港高級中學(xué)高三期中)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞增區(qū)間,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】∵SKIPIF1<0,∴SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞增區(qū)間,則SKIPIF1<0有解,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,故SKIPIF1<0.故選:D.5.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在其定義域的一個子區(qū)間SKIPIF1<0內(nèi)不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍去),因為SKIPIF1<0在定義域的一個子區(qū)間SKIPIF1<0內(nèi)不是單調(diào)函數(shù),所以SKIPIF1<0,得SKIPIF1<0,綜上,SKIPIF1<0,故選:D6.(2022·福建福州·高三期中)已知函數(shù)SKIPIF1<0,對任意的實數(shù)SKIPIF1<0,且SKIPIF1<0,不等式SKIPIF1<0恒成立,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】不妨設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,所以對任意的實數(shù)SKIPIF1<0時,都有SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0.在SKIPIF1<0上恒成立.令SKIPIF1<0.則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即實數(shù)a的取值范圍是SKIPIF1<0.故選:B.7.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為SKIPIF1<0在區(qū)間SKIPIF1<0上不是單調(diào)函數(shù),所以SKIPIF1<0在區(qū)間SKIPIF1<0上有解,即SKIPIF1<0在區(qū)間SKIPIF1<0上有解.令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.又因為SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0.故選:A8.(2022·安徽·合肥一中高二階段練習(xí))若函數(shù)SKIPIF1<0在其定義域上不單調(diào),則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0,因為函數(shù)SKIPIF1<0在其定義域上不單調(diào),即SKIPIF1<0有變號零點(diǎn),結(jié)合二次函數(shù)的性質(zhì),可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論