版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
DelayedImpactofFairMachineLearning
LydiaT.Liu?
SarahDean?
MoritzHardt?
EstherRolf? MaxSimchowitz?
April10,2018
Abstract
Fairnessinmachinelearninghaspredominantlybeenstudiedinstaticclassificationsettingswithoutconcernforhowdecisionschangetheunderlyingpopulationovertime.Conventionalwisdomsuggeststhatfairnesscriteriapromotethelong-termwell-beingofthosegroupstheyaimtoprotect.
Westudyhowstaticfairnesscriteriainteractwithtemporalindicatorsofwell-being,suchaslong-termimprovement,stagnation,anddeclineinavariableofinterest.Wedemonstratethateveninaone-stepfeedbackmodel,commonfairnesscriteriaingeneraldonotpromoteimprovementovertime,andmayinfactcauseharmincaseswhereanunconstrainedobjectivewouldnot.Wecompletelycharacterizethedelayedimpactofthreestandardcriteria,contrastingtheregimesinwhichtheseexhibitqualitativelydifferentbehavior.Inaddition,wefindthatanaturalformofmeasurementerrorbroadenstheregimeinwhichfairnesscriteriaperformfavorably.
Ourresultshighlighttheimportanceofmeasurementandtemporalmodelingintheevalua-tionoffairnesscriteria,suggestingarangeofnewchallengesandtrade-offs.
1
Introduction
Machinelearningcommonlyconsidersstaticobjectivesdefinedonasnapshotofthepopulationatoneinstantintime;consequentialdecisions,incontrast,reshapethepopulationovertime.Lendingpractices,forexample,canshiftthedistributionofdebtandwealthinthepopulation.Jobadvertisementsallocateopportunity.Schooladmissionsshapethelevelofeducationinacommunity.
Existingscholarshiponfairnessinautomateddecision-makingcriticizesunconstrainedmachinelearningforitspotentialtoharmhistoricallyunderrepresentedordisadvantagedgroupsinthepopulation[ExecutiveOfficeofthePresident,2016,BarocasandSelbst,2016].Consequently,avarietyoffairnesscriteriahavebeenproposedasconstraintsonstandardlearningobjectives.Eventhough,ineachcase,theseconstraintsareclearlyintendedtoprotectthedisadvantagedgroupbyanappealtointuition,arigorousargumenttothateffectisoftenlacking.
Inthiswork,weformallyexamineunderwhatcircumstancesfairnesscriteriadoindeedpromotethelong-termwell-beingofdisadvantagedgroupsmeasuredintermsofatemporalvariableofinterest.Goingbeyondthestandardclassificationsetting,weintroduceaone-stepfeedbackmodelofdecision-makingthatexposeshowdecisionschangetheunderlyingpopulationovertime.
?DepartmentofElectricalEngineeringandComputerSciences,UniversityofCalifornia,Berkeley
1
arXiv:1803.04383v2[cs.LG]7Apr2018
Ourrunningexampleisahypotheticallendingscenario.Therearetwogroupsinthepopulationwithfeaturesdescribedbyasummarystatistic,suchasacreditscore,whosedistributiondiffersbetweenthetwogroups.Thebankcanchoosethresholdsforeachgroupatwhichloansareoffered.Whilegroup-dependentthresholdsmayfacelegalchallenges[RossandYinger,2006],theyaregenerallyinevitableforsomeofthecriteriaweexamine.Theimpactofalendingdecisionhasmultiplefacets.Adefaulteventnotonlydiminishesprofitforthebank,italsoworsensthefinancialsituationoftheborrowerasreflectedinasubsequentdeclineincreditscore.Asuccessfullendingoutcomeleadstoprofitforthebankandalsotoanincreaseincreditscorefortheborrower.
Whenthinkingofoneofthetwogroupsasdisadvantaged,itmakessensetoaskwhatlendingpolicies(choicesofthresholds)leadtoanexpectedimprovementinthescoredistributionwithinthatgroup.Anunconstrainedbankwouldmaximizeprofit,choosingthresholdsthatmeetabreak-evenpointabovewhichitisprofitabletogiveoutloans.Onefrequentlyproposedfairnesscriterion,sometimescalleddemographicparity,requiresthebanktolendtobothgroupsatanequalrate.Subjecttothisrequirementthebankwouldcontinuetomaximizeprofittotheextentpossible.Anothercriterion,originallycalledequalityofopportunity,equalizesthetruepositiveratesbetweenthetwogroups,thusrequiringthebanktolendinbothgroupsatanequalrateamongindividualswhorepaytheirloan.Othercriteriaarenatural,butforclaritywerestrictourattentiontothesethree.
Dothesefairnesscriteriabenefitthedisadvantagedgroup?Whendotheyshowaclearadvantageoverunconstrainedclassification?Underwhatcircumstancesdoesprofitmaximizationworkintheinterestoftheindividual?Theseareimportantquestionsthatwebegintoaddressinthiswork.
1.1
Contributions
Weintroduceaone-stepfeedbackmodelthatallowsustoquantifythelong-termimpactofclassi-ficationondifferentgroupsinthepopulation.WerepresenteachofthetwogroupsAandBbyascoredistributionπAandπB,respectively.ThesupportofthesedistributionsisafinitesetXcor-respondingtothepossiblevaluesthatthescorecanassume.Wethinkofthescoreashighlightingonevariableofinterestinaspecificdomainsuchthathigherscorevaluescorrespondtoahigherprobabilityofapositiveoutcome.AninstitutionchoosesselectionpoliciesτA,τB:X→[0,1]thatassigntoeachvalueinXanumberrepresentingtherateofselectionforthatvalue.Inourexample,thesepoliciesspecifythelendingrateatagivencreditscorewithinagivengroup.Theinstitutionwillalwaysmaximizetheirutility(definedformallylater)subjecttoeither(a)noconstraint,or(b)equalityofselectionrates,or(c)equalityoftruepositiverates.
Weassumetheavailabilityofafunction?:X→Rsuchthat?(x)providestheexpected
changeinscoreforaselectedindividualatscorex.Thecentralquantitywestudyistheexpecteddifferenceinthemeanscoreingroupj∈{A,B}thatresultsfromaninstitutionspolicy,?μjdefinedformallyinEquation(2).Whenmodelingtheproblem,theexpectedmeandifferencecanalsoabsorbexternalfactorssuchas“reversiontothemean”solongastheyaremean-preserving.Qualitatively,wedistinguishbetweenlong-termimprovement(?μj>0),stagnation(?μj=0),anddecline(?μj<0).Ourfindingscanbesummarizedasfollows:
1.Bothfairnesscriteria(equalselectionrates,equaltruepositiverates)canleadtoallpossibleoutcomes(improvement,stagnation,anddecline)innaturalparameterregimes.WeprovideacompletecharacterizationofwheneachcriterionleadstoeachoutcomeinSection3.
2
Thereareaclassofsettingswhereequalselectionratescausedecline,whereasequaltruepositiveratesdonot(Corollary3.5),
Underamildassumption,theinstitution’soptimalunconstrainedselectionpolicycanneverleadtodecline(Proposition3.1).
Weintroducethenotionofanoutcomecurve(Figure1)whichsuccinctlydescribesthedif-ferentregimesinwhichonecriterionispreferableovertheothers.
WeperformexperimentsonFICOcreditscoredatafrom2003andshowthatundervariousmodelsofbankutilityandscorechange,theoutcomesofapplyingfairnesscriteriaareinlinewithourtheoreticalpredictions.
Wediscusshowcertaintypesofmeasurementerror(e.g.,thebankunderestimatingtherepay-mentabilityofthedisadvantagedgroup)affectourcomparison.Wefindthatmeasurementerrornarrowstheregimeinwhichfairnesscriteriacausedecline,suggestingthatmeasurementshouldbeafactorwhenmotivatingthesecriteria.
Weconsideralternativestohardfairnessconstraints.
Weevaluatetheoptimizationproblemwherefairnesscriterionisaregularizationtermintheobjective.Qualitatively,thisleadstothesamefindings.
Wediscussthepossibilityofoptimizingforgroupscoreimprovement?μjdirectlysubjecttoinstitutionutilityconstraints.Theresultingsolutionprovidesaninterestingpossiblealternativetoexistingfairnesscriteria.
2.
3.
4.
5.
Wefocusontheimpactofaselectionpolicyoverasingleepoch.Themotivationisthatthedesignerofasystemusuallyhasanunderstandingofthetimehorizonafterwhichthesystemisevaluatedandpossiblyredesigned.Formally,nothingpreventsusfromrepeatedlyapplyingourmodelandtracingchangesovermultipleepochs.Inreality,however,itisplausiblethatovergreatertimeperiods,economicbackgroundvariablesmightdominatetheeffectofselection.
Reflectingonourfindings,wearguethatcarefultemporalmodelingisnecessaryinordertoaccuratelyevaluatetheimpactofdifferentfairnesscriteriaonthepopulation.Moreover,anunder-standingofmeasurementerrorisimportantinassessingtheadvantagesoffairnesscriteriarelativetounconstrainedselection.Finally,thenuancesofourcharacterizationunderlinehowintuitionmaybeapoorguideinjudgingthelong-termimpactoffairnessconstraints.
1.2
Relatedwork
RecentworkbyHuandChen[2018]considersamodelforlong-termoutcomesandfairnessinthelabormarket.Theyproposeimposingthedemographicparityconstraintinatemporarylabormarketinordertoprovablyachieveanequitablelong-termequilibriuminthepermanentlabormarket,reminiscentofeconomicargumentsforaffirmativeaction[FosterandVohra,1992].Theequilibriumanalysisofthelabormarketdynamicsmodelallowsforspecificconclusionsrelatingfairnesscriteriatolongtermoutcomes.Ourgeneralframeworkiscomplementarytothistypeofdomainspecificapproach.
Fusteretal.[2017]considertheproblemoffairnessincreditmarketsfromadifferentperspective.Theirgoalistostudytheeffectofmachinelearningoninterestratesindifferentgroupsatanequilibrium,underastaticmodelwithoutfeedback.
3
Ensignetal.[2017]considerfeedbackloopsinpredictivepolicing,wherethepolicemoreheavilymonitorhighcrimeneighborhoods,thusfurtherincreasingthemeasurednumberofcrimesinthoseneighborhoods.Whiletheworkaddressesanimportanttemporalphenomenonusingthetheoryofurns,itisratherdifferentfromourone-stepfeedbackmodelbothconceptuallyandtechnically.
Demographicparityanditsrelatedformulationshavebeenconsideredinnumerouspapers[e.g.Caldersetal.,2009,Zafaretal.,2017].Hardtetal.[2016]introducedtheequalityofopportunityconstraintthatweconsideranddemonstratedlimitationsofabroadclassofcriteria.Kleinbergetal.[2017]andChouldechova[2016]pointoutthetensionbetween“calibrationbygroup”andequaltrue/falsepositiverates.Thesetrade-offscarryovertosomeextenttothecasewhereweonlyequalizetruepositiverates[Pleissetal.,2017].
Agrowingliteratureonfairnessinthe“bandits”settingoflearning[seeJosephetal.,2016,etsequelae]dealswithonlinedecisionmakingthatoughtnottobeconfusedwithourone-stepfeedbacksetting.Finally,therehasbeenmuchworkinthesocialsciencesonanalyzingtheeffectofaffirmativeaction[seee.g.,Keithetal.,1985,Kalevetal.,2006].
1.3
Discussion
Inthispaper,weadvocateforaviewtowardlong-termoutcomesinthediscussionof“fair”machinelearning.Wearguethatwithoutacarefulmodelofdelayedoutcomes,wecannotforeseetheimpactafairnesscriterionwouldhaveifenforcedasaconstraintonaclassificationsystem.However,ifsuchanaccurateoutcomemodelisavailable,weshowthattherearemoredirectwaystooptimizeforpositiveoutcomesthanviaexistingfairnesscriteria.Weoutlinesuchanoutcome-basedsolutioninSection4.3.Specifically,inthecreditsetting,theoutcome-basedsolutioncorrespondstogivingoutmoreloanstotheprotectedgroupinawaythatreducesprofitforthebankcomparedtounconstrainedprofitmaximization,butavoidsloaningtothosewhoareunlikelytobenefit,resultinginamaximallyimprovedgroupaveragecreditscore.Theextenttowhichsuchasolutioncouldformthebasisofsuccessfulregulationdependsontheaccuracyoftheavailableoutcomemodel.
Thisraisesthequestionifourmodelofoutcomesisrichenoughtofaithfullycapturerealisticphenomena.Byfocusingontheimpactthatselectionhasonindividualsatagivenscore,wemodeltheeffectsforthosenotselectedaszero-mean.Forexample,notgettingaloaninourmodelhasnonegativeeffectonthecreditscoreofanindividual.1Thisdoesnotmeanthatwrongfulrejection(i.e.,afalsenegative)hasnovisiblemanifestationinourmodel.Ifaclassifierhasahigherfalsenegativerateinonegroupthaninanother,weexpecttheclassifiertoincreasethedisparitybetweenthetwogroups(undernaturalassumptions).Inotherwords,inouroutcome-basedmodel,theharmofdeniedopportunitymanifestsasgrowingdisparitybetweenthegroups.Thecostofafalsenegativecouldalsobeincorporateddirectlyintotheoutcome-basedmodelbyasimplemodification(seeFootnote2).Thismaybefittinginsomeapplicationswheretheimmediateimpactofafalsenegativetotheindividualisnotzero-mean,butsignificantlyreducestheirfuturesuccessprobability.
Inessence,theformalismweproposerequiresustounderstandthetwo-variablecausalmecha-nismthattranslatesdecisionstooutcomes.Thiscanbeseenasrelaxingtherequirementscomparedwithrecentworkonavoidingdiscriminationthroughcausalreasoningthatoftenrequiredstrongerassumptions[Kusneretal.,2017,NabiandShpitser,2017,Kilbertusetal.,2017].Inparticular,theseworksrequiredknowledgeofhowsensitiveattributes(suchasgender,race,orproxiesthereof)
1Inreality,adeniedcreditinquirymaylowerone’screditscore,buttheeffectissmallcomparedtoadefaultevent.
4
causallyrelatetovariousothervariablesinthedata.Ourmodelavoidsthedelicatemodelingstepinvolvingthesensitiveattribute,andinsteadfocusesonanarguablymoretangibleeconomicmech-anism.Nonetheless,dependingontheapplication,suchanunderstandingmightnecessitategreaterdomainknowledgeandadditionalresearchintothespecificsoftheapplication.Thisisconsistentwithmuchscholarshipthatpointstothecontext-sensitivenatureoffairnessinmachinelearning.
2 ProblemSetting
WeconsidertwogroupsAandB,whichcompriseagAandgB=1?gAfractionofthetotalpopulation,andaninstitutionwhichmakesabinarydecisionforeachindividualineachgroup,
calledselection.IndividualsineachgroupareassignedscoresinX:=[C],andthescoresfor
C?1
groupj∈{A,B}aredistributedaccordingπj∈Simplex .Theinstitutionselectsapolicyτ:=(τA,τB)∈[0,1]2C,whereτj(x)correspondstotheprobabilitytheinstitutionselectsanindividualingroupjwithscorex.Oneshouldthinkofascoreasanabstractquantitywhichsummarizeshowwellanindividualissuitedtobeingselected;examplesareprovidedattheendofthissection.
Weassumethattheinstitutionisutility-maximizing,butmayimposecertainconstraintstoensurethatthepolicyτisfair,inasensedescribedinSection2.2.Weassumethatthereexistsafunctionu:C→R,suchthattheinstitution’sexpectedutilityforapolicyτisgivenby
U(τ)=P gP
j∈{A,B}j x∈X
τj(x)πj(x)u(x).
(1)
Noveltothiswork,wefocusontheeffectoftheselectionpolicyτonthegroupsAandB.Wequantifytheseoutcomesintermsofanaverageeffectthatapolicyτjhasongroupj.Formally,forafunction?(x):X→R,wedefinetheaveragechangeofthemeanscoreμjforgroupj
P
x∈X
(2)
?μj(τ):=
πj(x)τj(x)?(x).
Weremarkthatmanyofourresultsalsogothroughif?μj(τ)simplyreferstoanabstractchangeinwell-being,notnecessarilyachangeinthemeanscore.Furthermore,itispossibletomodifythedefinitionof?μj(τ)suchthatitdirectlyconsidersoutcomesofthosewhoarenotselected.2Lastly,weassumethatthesuccessofanindividualisindependentoftheirgroupgiventhescore;thatis,thescoresummarizesallrelevantinformationaboutthesuccessevent,sothereexistsafunctionρ:X→[0,1]suchthatindividualsofscorexsucceedwithprobabilityρ(x).
Wenowintroducethespecificdomainofcreditscoresasarunningexampleintherestofthepaper,afterwhichwepresenttwomoreexamplesshowingthegeneralapplicabilityofourformulationtomanydomains.
Example2.1(Creditscores).Inthesettingofloans,scoresx∈[C]representcreditscores,andthebankservesastheinstitution.Thebankchoosestograntorrefuseloanstoindividualsaccordingtoapolicyτ.Bothbankandpersonalutilitiesaregivenasfunctionsofloanrepayment,and
2Ifweconsiderfunctions?p(x):X→Rand?(nx):X→Rtorepresenttheaverageeffectofselectionand
non-selectionrespectively,then?μj(τ):=
x∈Xπj(x)(τj(x)?p(x)+(1?τj(x))?n(x)).Thismodelcorresponds
toreplacing?(x)intheoriginaloutcomedefinitionwith?p(x)??n(x),andaddingaoffset x∈Xπj(x)?n(x).
Undertheassumptionthat?p(x)??n(x)increasesinx,thismodelgivesrisetooutcomescurvesresemblingthoseinFigure1uptoverticaltranslation.Allpresentedresultsholdunchangedunderthefurtherassumptionthat
?μ(βMaxUtil)≥0.
5
thereforedependonthesuccessprobabilitiesρ(x),representingtheprobabilitythatanyindividualwithcreditscorexcanrepayaloanwithinafixedtimeframe.Theexpectedutilitytothebankisgivenbytheexpectedreturnfromaloan,whichcanbemodeledasanaffinefunctionofρ(x):
u(x)=u+ρ(x)+u?(1?ρ(x)),whereu+denotestheprofitwhenloansarerepaidandu?thelosswhentheyaredefaultedon.Individualoutcomesofbeinggrantedaloanarebasedonwhether
ornotanindividualrepaystheloan,andasimplemodelfor?(x)mayalsobeaffineinρ(x):
?(x)=c+ρ(x)+c?(1?ρ(x)),modifiedaccordinglyatboundarystates.Theconstantc+
thegainincreditscoreifloansarerepaidandc?isthescorepenaltyincaseofdefault.
Example2.2(Advertising).Asecondillustrativeexampleisgivenbythecaseofadvertisingagenciesmakingdecisionsaboutwhichgroupstotarget.Anindividualwithproductinterestscorexrespondspositivelytoanadwithprobabilityρ(x).Theadagencyexperiencesutilityu(x)relatedtoclick-throughrates,whichincreaseswithρ(x).Individualswhoseetheadbutareuninterestedmayreactnegatively(becominglessinterestedintheproduct),and?(x)encodestheinterestchange.Iftheproductisapositivegoodlikeeducationoremploymentopportunities,interestcancorrespondtowell-being.Thustheadvertisingagency’sincentivestoonlyshowadstoindividualswithextremelyhighinterestmayleavebehindgroupswhoseinterestisloweronaverage.Arelatedhistoricalexampleoccurredinadvertisementsforcomputersinthe1980s,wheremaleconsumersweretargetedoverfemaleconsumers,arguablycontributingtothecurrentgendergapincomputing.
Example2.3(CollegeAdmissions).Thescenarioofcollegeadmissionsorscholarshipallotmentscanalsobeconsideredwithinourframework.Collegesmayselectcertainapplicantsforacceptanceaccordingtoascorex,whichcouldbethoughtencodea“collegepreparedness”measure.Thestu-dentswhoareadmittedmight“succeed”(thiscouldbeinterpretedasgraduating,graduatingwithhonors,findingajobplacement,etc.)withsomeprobabilityρ(x)dependingontheirpreparedness.Thecollegemightexperienceautilityu(x)correspondingtoalumnidonations,orpositiveratingwhenastudentsucceeds;theymightalsoshowadropinratingoralossofinvestedscholarshipmoneywhenastudentisunsuccessful.Thestudent’ssuccessincollegewillaffecttheirlatersuccess,whichcouldbemodeledgenerallyby?(x).Inthisscenario,itischallengingtoensurethatasinglesummarystatisticxcapturesenoughinformationaboutastudent;itmaybemoreappropriatetoconsiderxasavectoraswellasmorecomplexformsofρ(x).
Whileavarietyofapplicationsaremodeledfaithfullywithinourframework,therearelimitationstotheaccuracywithwhichreal-lifephenomenoncanbemeasuredbystrictlybinarydecisionsandsuccessprobabilities.Suchbinaryrulesarenecessaryforthedefinitionandexecutionofexistingfairnesscriteria,(seeSec.2.2)andaswewillsee,evenmodelingthesefacetsofdecisionmakingasbinaryallowsforcomplexandinterestingbehavior.
denotes
2.1
TheOutcomeCurve
Wenowintroduceimportantoutcomeregimes,statedintermsofthechangeinaveragegroupscore.Apolicy(τA,τB)issaidtocauseactiveharmtogroupjif?μj(τj)<0,stagnationif
?μj(τj)=0,andimprovementif?μj(τj)>0.Underourmodel,MaxUtilpoliciescanbechosen
inastandardfashionwhichappliesthesamethresholdτMaxUtilforbothgroups,andisagnostictothedistributionsπAandπB.Hence,ifwedefine
?μMaxUtil:=?μj(τMaxUtil)
(3)
j
6
OUTCOMECURVE
RelativeImprovementRelativeHarm
ActiveHarm
0
1
SelectionRate
(b)
SelectionRate
0
0
1
1
*
SelectionRate
(a)
(c)
Figure1:
Theabovefigureshowstheoutcomecurve.Thehorizontalaxisrepresentstheselection
rateforthepopulation;theverticalaxisrepresentsthemeanchangeinscore.(a)depictsthefull
spectrumofoutcomeregimes,andcolorsindicateregionsofactiveharm,relativeharm,andnoharm.In(b):agroupthathasmuchpotentialforgain,in(c):agroupthathasnopotentialforgain.
?μMaxUtil,
andrelativeim-
wesaythatapolicycausesrelativeharmtogroupjif
?μ(τj)
<
j
j
provementif?μj(τj)>?μMaxUtil.Inparticular,wefocusontheseoutcomesforadisadvantaged
j
group,andconsiderwhetherimposingafairnessconstraintimprovestheiroutcomesrelativetothe
MaxUtilstrategy.Fromthispointforward,wetakeAtobedisadvantagedorprotePctedgroup.
Figure1displaystheimportantoutcomeregimesintermsofselectionratesβj:= x∈Xπj(x)τj(x).
Thissuccinctcharacterizationispossiblewhenconsideringdecisionrulesbasedon(possiblyran-domized)scorethresholding,inwhichallindividualswithscoresaboveathresholdareselected.InSection5,wejustifytherestrictiontosuchthresholdpoliciesbyshowingitpreservesoptimality.InSection5.1,weshowthattheoutcomecurveisconcave,thusimplyingthatittakestheshapedepictedinFigure1.Toexplicitlyconnectselectionratestodecisionpolicies,wedefinetheratefunctionrπ(τj)whichreturnstheproportionofgroupjselectedbythepolicy.Weshowthatthisfunctionisinvertibleforasuitableclassofthresholdpolicies,andinfacttheoutcomecurveis
?1
preciselythegraphofthemapfromselectionratetooutcomeβ7→?μ(r (β)).Next,wedefine
A
A
thevaluesofβthatmarkboundariesoftheoutcomeregions.
Definition2.1(Selectionratesofinterest).GiventheprotectedgroupA,thefollowingselectionratesareofinterestindistinguishingbetweenqualitativelydifferentclassesofoutcomes(Figure1).WedefineβMaxUtilastheselectionrateforAunderMaxUtil;β0astheharmthreshold,such
that?μA(r?1(β0))=0;β?astheselectionratesuchthat?μismaximized;βastheoutcome-
πA
A
complementoftheMaxUtilselectionrate,?μr?1(β))=?μ(r?1(βMaxUtil))withβ>
βMaxUtil.
AAπ
A
πA
7
2.2
DecisionRulesandFairnessCriteria
Wewillconsiderpoliciesthatmaximizetheinstitution’stotalexpectedutility,potentiallysubjecttoaconstraint:τ∈C∈[0,1]2Cwhichenforcessomenotionof“fairness”.Formally,theinstitutionselectsτ?∈argmaxU(τ)s.t.τ∈C.Weconsiderthethreefollowingconstraints:
Definition2.2(Fairnesscriteria).Themaximumutility(MaxUtil)policycorrespondstothenull-constraintC=[0,1]2C,sothattheinstitutionisfreetofocussolelyonutility.Thedemographicparity(DemParity)policyresPultsinequalselecPtionratesbetweenbothgroups.Formally,the
constraintisC= (τA,τB):
x∈XπA(x)τA=
x∈XπB(x)τB
.Theequalopportunity(EqOpt)
policyresultsPinequaltruepositiverates(TPR)betweenbothgroup,whereTPRisdefinedas
x∈Xπj(x)ρ(x)τ(x).
TPRj(τ):=
EqOptensuresthattheconditionalprobabilityofselectiongiven
πj(x)ρ(x)
x∈X
thattheindividualwillbesuccessfulisindependentofthepopulation,formallyenforcedbytheconstraintC={(τA,τB):TPRA(τA)=TPRB(τB)}.
Justastheexpectedoutcome?μcanbeexpressedintermsofselectionrateforthreshold
policies,socanthetotalutilityU.Intheunconstrainedcause,UvariesindependentlyovertheselectionratesforgroupAandB;however,inthepresenceoffairnessconstraintstheselectionrate
foronegroupdeterminestheallowableselectionratefortheother.TheselectionratesmustbeequalforDemParity,butforEqOptwecandefineatransferfunction,G(A→B),whichforeveryloanrateβingroupAgivestheloanrateingroupBthathasthesametruepositiverate.Therefore,whenconsideringthresholdpolicies,decisionrulesamounttomaximizingfunctionsofsingleparameters.ThisideaisexpressedinFigure2,andunderpinstheresultstofollow.
3
Results
Inordertoclearlycharacterizetheoutcomeofapplyingfairnessconstraints,wemakethefollowingassumption.
Assumption1(Institutionutilities).Theinstitution’sindividualutilityfunctionismorestringent
thantheexpectedscorechanges,u(x)>0=??(x)>0.(Forthelinearformpresentedin
Example2.1,u?< isnecessaryandsufficient.)
c?
u+ c+
Thissimplifyingassumptionquantifiestheintuitivenotionthatinstitutionstakeagreaterriskbyacceptingthantheindividualdoesbyapplying.Forexample,inthecreditsetting,abanklosestheamountloanedinthecaseofadefault,butmakesonlyinterestincaseofapayback.Using
Assumption1,wecanrestrictthepositionofMaxUtilontheoutcomecurveinthefollowingsense.
0≤?μMaxUtil≤
Proposition3.1(MaxUtildoesnotcauseactiveharm).UnderAssumption1,
?μ?.
WedirectthereadertoAppendixCfortheproofoftheaboveproposition,andallsubsequentresultspresentedinthissection.TheresultsarecorollariestotheoremspresentedinSection6.
3.1
ProspectsandPitfallsofFairnessCriteria
Webeginbycharacterizinggeneralsettingsunderwhichfairnesscriteriaacttoimproveoutcomes
overunconstrainedMaxUtilstrategies.Forthisresult,wewillassumethatgroupAisdisadvantaged
8
1
0
MUDPEO
1
0
SelectionRate
Figure2:Bothoutcomes?μandinstitutionutilitiesUcanbeplottedasafunctionofselectionrateforonegroup.Themaximaoftheutilitycurvesdeterminetheselectionratesresultingfrom
variousdecisionrules.
inthesensethattheMaxUtilacceptancerateforBislargecomparedtorelevantacceptanceratesforA.
Corollary3.2(FairnessCriteriacancauseRela
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育器材運(yùn)輸司機(jī)合同
- 城市公共自行車租賃系統(tǒng)開發(fā)合同
- 可持續(xù)發(fā)展報(bào)告編制服務(wù)合同
- 味精企業(yè)的市場(chǎng)營銷策略優(yōu)化考核試卷
- 建筑裝飾施工中的安全生產(chǎn)責(zé)任制落實(shí)考核試卷
- 現(xiàn)代農(nóng)業(yè)技術(shù)推廣服務(wù)合同
- 中藥浴足保健考核試卷
- 醫(yī)療健康大數(shù)據(jù)平臺(tái)建設(shè)運(yùn)營合同
- 內(nèi)陸?zhàn)B殖的生產(chǎn)鏈條優(yōu)化與完善考核試卷
- 保險(xiǎn)理賠服務(wù)合同協(xié)議
- 高考英語單詞3500(亂序版)
- 《社區(qū)康復(fù)》課件-第五章 脊髓損傷患者的社區(qū)康復(fù)實(shí)踐
- 北方、南方戲劇圈的雜劇文檔
- 燈謎大全及答案1000個(gè)
- 白酒銷售經(jīng)理述職報(bào)告
- 部編小學(xué)語文(6年級(jí)下冊(cè)第6單元)作業(yè)設(shè)計(jì)
- 洗衣機(jī)事業(yè)部精益降本總結(jié)及規(guī)劃 -美的集團(tuán)制造年會(huì)
- 2015-2022年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招語文/數(shù)學(xué)/英語筆試參考題庫含答案解析
- 2023年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)模擬試題及答案解析
- 鋁合金門窗設(shè)計(jì)說明
- 小學(xué)數(shù)學(xué)-三角形面積計(jì)算公式的推導(dǎo)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
評(píng)論
0/150
提交評(píng)論