版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省鄒城第一中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.2.下列橢圓中,焦點坐標是的是()A. B.C. D.3.如圖,在三棱錐S-ABC中,E,F(xiàn)分別為SA,BC的中點,點G在EF上,且滿足,若,,,則()A. B.C. D.4.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.5.設(shè)函數(shù),,,則()A. B.C. D.6.如圖,已知直線AO垂直于平面,垂足為O,BC在平面內(nèi),AB與平面所成角的大小為,,,則異面直線AB與OC所成角的余弦值為()A. B.C. D.7.已知點F為拋物線C:的焦點,點,若點Р為拋物線C上的動點,當取得最大值時,點P恰好在以F,為焦點的橢圓上,則該橢圓的離心率為()A. B.C. D.8.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.169.橢圓的焦點為F1,F(xiàn)2,點P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.10.已知雙曲線的離心率為2,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為()A. B.C. D.11.若拋物線焦點坐標為,則的值為A. B.C.8 D.412.已知函數(shù)有兩個極值點m,n,且,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,向量,若,則實數(shù)的值為________.14.已知拋物線的焦點與的右焦點重合,則__________.15.雙曲線的右頂點為A,右焦點為F,過點F平行于雙曲線的一條漸近線的直線與雙曲線交于點B,則的面積為__________16.若,滿足不等式組,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,橢圓C:(a>b>0)的左、右焦點分別為,其離心率,且橢圓C經(jīng)過點.(1)求橢圓C的標準方程;(2)過點M作兩條不同的直線與橢圓C分別交于點A,B(均異于點M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請給予證明;若不是,請說明理由.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點,使二面角大小為?若存在,請指出點的位置,若不存在,請說明理由.19.(12分)設(shè)全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分條件,求a的取值范圍;(2)若“x∈A”是“x∈B”的必要條件,求a的取值范圍.20.(12分)在平面直角坐標系中,為坐標原點,曲線上點都在軸及其右側(cè),且曲線上的任一點到軸的距離比它到圓的圓心的距離小1(1)求曲線的方程;(2)已知過點的直線交曲線于點,若,求面積21.(12分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率22.(10分)已知的三個內(nèi)角,,的對邊分別為,,,且滿足.(1)求角的大小;(2)若,,,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.2、B【解析】根據(jù)給定條件逐一分析各選項中的橢圓焦點即可判斷作答.【詳解】對于A,橢圓的焦點在x軸上,A不是;對于B,橢圓,即,焦點在y軸上,半焦距,其焦點為,B是;對于C,橢圓,即,焦點在y軸上,半焦距,其焦點為,C不是;對于D,橢圓,即,焦點在y軸上,半焦距,其焦點為,D不是.故選:B3、B【解析】利用空間向量基本定理結(jié)合已知條件求解【詳解】因為,所以,因為E,F(xiàn)分別為SA,BC的中點,所以,故選:B4、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因為雙曲線經(jīng)過點,所以有,所以雙曲線方程為,化為標準方程為.故選:A5、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進而由單調(diào)性得出大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增.因為,所以,而,所以.因為,且,所以.即.故選:A6、B【解析】建立空間直角坐標系,求出相關(guān)點的坐標,求出向量的坐標,再利用向量的夾角公式計算即可.【詳解】如圖,以O(shè)為坐標原點,過點O作OB的垂線為x軸,OB為y軸,OA為z軸,建立空間直角坐標系,設(shè),則,,則,,,,,設(shè)的夾角為,則,所以異面直線AB與OC所成角的余弦值為,故選:B.7、D【解析】過點P引拋物線準線的垂線,交準線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當最小,即直線與拋物線相切時滿足題意,進而解出此時P的坐標,解得答案即可.【詳解】如圖,易知點在拋物線C的準線上,作PD垂直于準線,且與準線交于點D,記,則.由拋物線定義可知,.由圖可知,當取得最大值時,最小,此時直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.8、A【解析】由拋物線的性質(zhì):過焦點的弦長公式計算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因為,所以,所以,故選:A.9、B【解析】根據(jù)題意,橢圓的標準方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B10、B【解析】求出焦點,則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.11、A【解析】先把拋物線方程整理成標準方程,進而根據(jù)拋物線的焦點坐標,可得的值.【詳解】拋物線的標準方程為,因為拋物線的焦點坐標為,所以,所以,故選A.【點睛】該題考查的是有關(guān)利用拋物線的焦點坐標求拋物線的方程的問題,涉及到的知識點有拋物線的簡單幾何性質(zhì),屬于簡單題目.12、C【解析】對求導(dǎo)得,得到m,n是兩個根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求單調(diào)性,進而得最值.【詳解】由得:m,n是兩個根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù),由求解.【詳解】因為向量,向量,且,所以,解得,故答案為:214、【解析】求出拋物線的焦點坐標即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.15、【解析】由平行線的性質(zhì)求出斜率,由點斜式求出直線方程,然后求出交點坐標,由三角形面積公式可得結(jié)果.【詳解】雙曲線的右頂點,右焦點,,所以漸近線方程為,不妨設(shè)直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.16、10【解析】作出不等式區(qū)域,如圖所示:目標最大值,即為平移直線的最大縱截距,當直線經(jīng)過點時最大為10.故答案為10.點睛:本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點的坐標,再通過斜率公式計算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過點,則②,由①②解得a=6,b=2,所以橢圓的標準方程為【小問2詳解】設(shè)直線MA的斜率為k,點,因為∠AMB的平分線與y軸平行,所以直線MA與MB的斜率互為相反數(shù),則直線MB的斜率為-k.聯(lián)立直線MA與橢圓方程,得整理,得,所以,同理可得,所以,又所以為定值.18、(1)證明見解析;(2);(3)存在,點在線段上位于靠近點的四等分點處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設(shè)存在點,設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合的取值范圍可求得的值,即可得出結(jié)論.【小問1詳解】證明:,,為的中點,則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點,.平面平面,且平面平面,平面,平面.如圖,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設(shè)存在點,設(shè),其中,所以,,且,設(shè)平面法向量為,所以,令,可得,由(2)知平面的一個法向量為,二面角為,則,整理可得,因,解得.故存在點,且點在線段上位于靠近點的四等分點處.19、(1)(2)【解析】(1)由“”是“”的充分條件,可得,從而可得關(guān)于的不等式組,解不等式組可得答案;(2)“”是“”的必要條件,可得,然后分和兩種情況求解即可【小問1詳解】由題意得到A=[1,5],由“x∈A”是“x∈B”的充分條件可得A?B,則,解得,故實數(shù)a的取值范圍是.【小問2詳解】由“x∈A”是“x∈B”的必要條件可得B?A,當時,2-a>1+2a,即a<時,滿足題意,當時,即a≥時,則,解得≤a≤1.綜上a≤1,故實數(shù)a的取值范圍是.20、(1)(2)【解析】(1)由題意直接列或根據(jù)拋物線的定義求軌跡方程(2)待定系數(shù)法設(shè)直線方程,聯(lián)立直線與拋物線方程,根據(jù)拋物線的定義,利用韋達定理解出直線方程,再求面積【小問1詳解】解法1:配方法可得圓的方程為,即圓的圓心為,設(shè)的坐標為,由已知可得,化簡得,曲線的方程為解法2:配方可得圓的方程為,即圓的圓心為,由題意可得上任意一點到直線的距離等于該點到圓心的距離,由拋物線的定義可得知,點的軌跡為以點為焦點的拋物線,所以曲線的方程為【小問2詳解】拋物線的焦點為,準線方程為,由,可得的斜率存在,設(shè)為,,過的直線的方程為,與拋物線的方程聯(lián)立,可得,設(shè),的橫坐標分別為,,可得,,由拋物線的定義可得,解得,即直線的方程為,可得到直線的距離為,,所以的面積為21、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標準方程,由點與圓的位置關(guān)系可得,求解不等式組得答案;(2)當時,圓的方程為,求出圓心與半徑,設(shè),則,分析可得面積的最大值,結(jié)合直線與圓的位置關(guān)系可得圓心到直線的距離,設(shè)直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當時,圓的方程為,圓心為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度中醫(yī)婦科師承教育合作合同4篇
- 2025年度智能化生產(chǎn)線設(shè)備采購合同補充協(xié)議3篇
- 2024進出口業(yè)務(wù)銷售合同范本
- 2025不銹鋼水箱售后服務(wù)與維護保養(yǎng)合同范本3篇
- 2024版潛孔鉆租賃業(yè)務(wù)協(xié)議要約一
- 家用電烤盤建設(shè)項目申請報告可行性研究報告
- 2025年度智能駕駛技術(shù)研發(fā)中心高級工程師個人聘用合同3篇
- 2025年度個人抵押貸款合同終止及債權(quán)債務(wù)處理合同范本4篇
- 2025年度個人消費信貸融資委托服務(wù)協(xié)議3篇
- 2025年寧夏公路橋梁建設(shè)有限公司招聘筆試參考題庫含答案解析
- GB/T 12914-2008紙和紙板抗張強度的測定
- GB/T 1185-2006光學(xué)零件表面疵病
- ps6000自動化系統(tǒng)用戶操作及問題處理培訓(xùn)
- 家庭教養(yǎng)方式問卷(含評分標準)
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設(shè)計和原理
- TSG ZF001-2006 安全閥安全技術(shù)監(jiān)察規(guī)程
- 部編版二年級語文下冊《蜘蛛開店》
- 鍋爐升降平臺管理
- 200m3╱h凈化水處理站設(shè)計方案
- 個體化健康教育記錄表格模板1
評論
0/150
提交評論