陜西省藍田縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
陜西省藍田縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
陜西省藍田縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
陜西省藍田縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
陜西省藍田縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省藍田縣2024屆高二數(shù)學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.2.已知函數(shù),,若,使得,則實數(shù)的取值范圍是()A. B.C. D.3.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.4.現(xiàn)有60瓶飲料,編號從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進行檢驗,則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,305.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現(xiàn)奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據(jù)規(guī)劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.6.小方每次投籃的命中率為,假設每次投籃相互獨立,則他連續(xù)投籃2次,恰有1次命中的概率為()A. B.C. D.7.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.8.若,則與的大小關系是()A. B.C. D.不能確定9.宋元時期數(shù)學名著《算學啟蒙》中有關于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.210.已知實數(shù)a,b,c,若a>b,則下列不等式成立的是()A B.C. D.11.等差數(shù)列的首項為正數(shù),其前n項和為.現(xiàn)有下列命題,其中是假命題的有()A.若有最大值,則數(shù)列的公差小于0B.若,則使的最大的n為18C.若,,則中最大D.若,,則數(shù)列中的最小項是第9項12.若雙曲線(,)的焦距為,且漸近線經(jīng)過點,則此雙曲線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項的系數(shù)是,則正整數(shù)______________.14.過點,且垂直于的直線方程為_______________.15.已知數(shù)列滿足,,則______.16.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點,則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若在單調遞增,求的取值范圍;(2)若,求證:.18.(12分)某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,出現(xiàn)故障時需1名工人進行維修,且每臺機器是否出現(xiàn)故障是相互獨立的,每臺機器出現(xiàn)故障的概率為(1)若出現(xiàn)故障的機器臺數(shù)為X,求X的分布列;(2)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時維修,都產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?19.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標準方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標;否則,請說明理由.20.(12分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結束,設甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結束的概率;(2)求甲獲勝的概率21.(12分)已知拋物線:的焦點是圓與軸的一個交點.(1)求拋物線的方程;(2)若過點的直線與拋物線交于不同的兩點A、B,О為坐標原點,證明:.22.(10分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎題.2、A【解析】由定義證明函數(shù)的單調性,再由函數(shù)不等式恒能成立的性質得出,從而得出實數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調遞減,若,使得,則即故選:A【點睛】結論點睛:本題考查不等式恒成立問題,解題關鍵是轉化為求函數(shù)的最值,轉化時要注意全稱量詞與存在量詞對題意的影響.等價轉化如下:(1),,使得成立等價于(2),,不等式恒成立等價于(3),,使得成立等價于(4),,使得成立等價于3、D【解析】由直線的傾斜角為,可得,結合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:4、A【解析】求得組距,由此確定正確選項.【詳解】,即組距為,A選項符合,其它選項不符合.故選:A5、B【解析】分別設內外層橢圓方程為、,進而設切線、分別為、,聯(lián)立方程組整理并結合求、關于a、b、m的關系式,再結合已知得到a、b的齊次方程求離心率即可.【詳解】若內層橢圓方程為,由離心率相同,可設外層橢圓方程為,∴,設切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關鍵點點睛:根據(jù)內外橢圓的離心率相同設橢圓方程,并寫出切線方程,聯(lián)立方程結合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.6、A【解析】先弄清連續(xù)投籃2次,恰有1次命中的情況有兩種,它們是互斥關系,因此根據(jù)相互獨立事件以及互斥事件的概率計算公式進行求解.【詳解】由題意知,他連續(xù)投籃2次,有兩種互斥的情況,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率為,故選:A.7、B【解析】根據(jù)斜率的取值范圍,結合來求得傾斜角的取值范圍.【詳解】設傾斜角為,因為,且,所以.故選:B8、B【解析】由題知,進而研究的符號即可得答案.詳解】解:,所以,即.故選:B9、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【點睛】本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答10、C【解析】根據(jù)不等式的性質逐一分析即可得出答案.【詳解】解:對于A,因為a>b,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若a>b,又,所以,故C正確;對于D,當時,,故D錯誤.故選:C.11、B【解析】由有最大值可判斷A;由,可得,,利用可判斷BC;,得,,可判斷D.【詳解】對于選項A,∵有最大值,∴等差數(shù)列一定有負數(shù)項,∴等差數(shù)列為遞減數(shù)列,故公差小于0,故選項A正確;對于選項B,∵,且,∴,,∴,,則使的最大的n為17,故選項B錯誤;對于選項C,∵,,∴,,故中最大,故選項C正確;對于選項D,∵,,∴,,故數(shù)列中的最小項是第9項,故選項D正確.故選:B.12、B【解析】根據(jù)題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經(jīng)過點,故,故,雙曲線方程為:.故選:.【點睛】本題考查了雙曲線方程,意在考查學生對于雙曲線基本知識的掌握情況.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由已知二項式可得展開式通項為,根據(jù)已知條件有,即可求出值.詳解】由題設,,∴,則且為正整數(shù),解得.故答案為:4.14、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.15、1023【解析】由數(shù)列遞推公式求特定項,依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102316、【解析】當圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點,由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點,故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點睛】本小題主要考查橢圓和圓的位置關系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調遞增,則在上恒成立,由求解.(2)由(1)的結論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時,,在上單調遞增,所以,所以有,即,因此.(2)由(1)可知當時,為增函數(shù),不妨取,則有在上單調遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點睛】方法點睛:(1)利用導數(shù)研究函數(shù)的單調性的關鍵在于準確判定導數(shù)的符號,當f(x)含參數(shù)時,需依據(jù)參數(shù)取值對不等式解集的影響進行分類討論.(2)若可導函數(shù)f(x)在指定的區(qū)間D上單調遞增(減),求參數(shù)范圍問題,可轉化為f′(x)≥0(或f′(x)≤0)恒成立問題,從而構建不等式,要注意“=”是否可以取到18、(1)答案見解析(2)雇傭3名【解析】(1)設出現(xiàn)故障的機器臺數(shù)為X,由題意知,即可由二項分布求解;(2)設該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機器運行是否出現(xiàn)故障看作一次實驗,在一次試驗中,機器出現(xiàn)故障的概率為,4臺機器相當于4次獨立試驗設出現(xiàn)故障的機器臺數(shù)為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設該廠雇傭n名工人,n可取0、1、2、3、4,設“在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修”的概率為,則:n01234P1∵,∴至少要3名工人,才能保證在任何時刻多臺機器同時出現(xiàn)故障時能及時進行維修的概率不小于90%當該廠雇傭3名工人時,設該廠獲利為Y萬元,則Y的所有可能取值為17,12,,,∴Y的分布列為:Y1712P∴,∴該廠獲利的均值為16.9萬元當該廠雇傭4名工人時,4臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率為100%,該廠獲利的均值為萬元∴若該廠要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%時,雇傭3名工人使該廠每月獲利最大19、(1)(2)恒過點【解析】(1)設為橢圓上的點,根據(jù)橢圓的性質得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當時直線過點,故舍去,所以,則直線恒過點;20、(1)(2)【解析】(1)設事件“甲在第次投籃投中”,設事件“乙在第次投籃投中”,記“甲乙各投球一次,比賽結束”為事件,則,利用獨立事件和互斥事件的概率公式,即得解(2)記“甲獲勝”為事件,由題意,根據(jù)概率的加法公式和獨立事件的概率公式,即得解【小問1詳解】設事件“甲在第次投籃投中”,其中設事件“乙在第次投籃投中”,其中則,,其中記“甲乙各投球一次,比賽結束”為事件,,事件與事件相互獨立根據(jù)事件獨立性定義得:甲乙各投球一次,比賽結束的概率為【小問2詳解】記“甲獲勝”為事件,事件、事件、事件彼此互斥根據(jù)概率加法公式和事件獨立性定義得:甲獲勝的概率為21、(1)(2)證明見解析【解析】(1)由圓與軸的交點分別為,可得拋物線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論