版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東師范大學(xué)附中2023-2024學(xué)年高二上數(shù)學(xué)期末考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為()A. B.C. D.2.已知曲線,下列命題錯(cuò)誤的是()A.若,則是橢圓,其焦點(diǎn)在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點(diǎn),,為曲線的兩個(gè)焦點(diǎn),則3.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.4.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個(gè)交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.5.已知等比數(shù)列的前3項(xiàng)和為3,,則()A. B.4C. D.16.已知命題,,若是一個(gè)充分不必要條件,則的取值范圍是()A. B.C. D.7.已知?jiǎng)t是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.9.在數(shù)列中,,則等于A. B.C. D.10.已知,且,則的最大值為()A. B.C. D.11.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A. B.C. D.12.若方程表示雙曲線,則此雙曲線的虛軸長(zhǎng)等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則_______14.從某校隨機(jī)抽取某次數(shù)學(xué)考試100分以上(含100分,滿分150分)的學(xué)生成績(jī),將他們的分?jǐn)?shù)數(shù)據(jù)繪制成如圖所示頻率分布直方圖.若共抽取了100名學(xué)生的成績(jī),則分?jǐn)?shù)在內(nèi)的人數(shù)為_(kāi)__________15.在△ABC中,,AB=3,,則________16.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某高中招聘教師,首先要對(duì)應(yīng)聘者的簡(jiǎn)歷進(jìn)行篩選,簡(jiǎn)歷達(dá)標(biāo)者進(jìn)入面試,面試環(huán)節(jié)應(yīng)聘者要回答3道題,第一題為教育心理學(xué)知識(shí),答對(duì)得4分,答錯(cuò)得0分,后兩題為學(xué)科專業(yè)知識(shí),每道題答對(duì)得3分,答錯(cuò)得0分(1)甲、乙、丙、丁、戊來(lái)應(yīng)聘,他們中僅有3人的簡(jiǎn)歷達(dá)標(biāo),若從這5人中隨機(jī)抽取3人,求這3人中恰有2人簡(jiǎn)歷達(dá)標(biāo)的概率;(2)某進(jìn)入面試的應(yīng)聘者第一題答對(duì)的概率為,后兩題答對(duì)的概率均為,每道題答對(duì)與否互不影響,求該應(yīng)聘者的面試成績(jī)X的分布列及數(shù)學(xué)期望18.(12分)如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,D是AC的中點(diǎn).(1)證明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.19.(12分)已知等差數(shù)列中,(1)分別求數(shù)列的通項(xiàng)公式和前項(xiàng)和;(2)設(shè),求20.(12分).在直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線相交于A,B兩點(diǎn)(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求值21.(12分)已知正三棱柱底面邊長(zhǎng)為,是上一點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形(1)證明:是中點(diǎn);(2)求點(diǎn)到平面的距離22.(10分)已知直線與直線交于點(diǎn).(1)求過(guò)點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過(guò)點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因?yàn)椋瑒t,由勾股定理得,即,整理得,故.故選:A.2、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點(diǎn)在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點(diǎn)在軸上,由雙曲線的定義可知,,故D錯(cuò)誤;故選:D3、A【解析】由三角形內(nèi)角及正弦函數(shù)的性質(zhì)判斷、的真假,應(yīng)用換元法令,結(jié)合對(duì)勾函數(shù)的性質(zhì)確定的值域即知、的真假,根據(jù)各選項(xiàng)復(fù)合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.4、D【解析】設(shè)橢圓長(zhǎng)半軸長(zhǎng)為a1,雙曲線的半實(shí)軸長(zhǎng)a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a1,雙曲線的半實(shí)軸長(zhǎng)為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡(jiǎn)得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過(guò)橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長(zhǎng),考查利用基本不等式求最值問(wèn)題,屬于中檔題5、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項(xiàng)公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項(xiàng)和為3,故,即,解得故選:D6、A【解析】先化簡(jiǎn)命題p,q,再根據(jù)是的一個(gè)充分不必要條件,由q求解.【詳解】因?yàn)槊},或,又是的一個(gè)充分不必要條件,所以,解得,所以的取值范圍是,故選:A7、A【解析】先解不等式,再比較集合包含關(guān)系確定選項(xiàng).【詳解】因?yàn)?,所以是的充分不必要條件,選A.【點(diǎn)睛】本題考查解含絕對(duì)值不等式、解一元二次不等式以及充要關(guān)系判定,考查基本分析求解能力,屬基礎(chǔ)題.8、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進(jìn)而求出數(shù)列的周期,然后通過(guò)周期性求得答案.【詳解】因?yàn)閿?shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B9、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點(diǎn)睛:對(duì)于含有的數(shù)列,我們看作擺動(dòng)數(shù)列,往往逐一列舉出來(lái)觀察前面有限項(xiàng)的規(guī)律10、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當(dāng)且僅當(dāng)時(shí)取等號(hào)),的最大值為.故選:A.11、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.12、B【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長(zhǎng)為,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先對(duì)函數(shù)求導(dǎo),然后令可求出的值【詳解】因?yàn)椋?,則,解得故答案為:14、30【解析】根據(jù)頻率分布直方圖中所以小矩形面積和為1,可得a值,根據(jù)總?cè)藬?shù)和頻率,即可得答案.【詳解】因?yàn)轭l率分布直方圖中所以小矩形面積和為1,所以,解得,所以分?jǐn)?shù)在內(nèi)的人數(shù)為.故答案為:3015、3【解析】計(jì)算得出,可得出,再利用平面向量數(shù)量積的運(yùn)算性質(zhì)可求得結(jié)果.【詳解】∵,,,∴故答案為:3.16、(1)(2)詳見(jiàn)解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問(wèn)題,屬于常考題型.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)分布列見(jiàn)解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機(jī)變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨(dú)立事件的概率乘法公式分別求出對(duì)應(yīng)的概率,列出分布列即可求出數(shù)學(xué)期望【小問(wèn)1詳解】從這5人中隨機(jī)抽取3人,恰有2人簡(jiǎn)歷達(dá)標(biāo)的概率為【小問(wèn)2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以18、(1)證明見(jiàn)解析(2)【解析】(1),連接,證明,再根據(jù)線面平行的判定定理即可得證;(2)說(shuō)明平面,取的中點(diǎn)F,連接,以D為原點(diǎn),分別以的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,利用向量法即可得出答案.【小問(wèn)1詳解】證明:記,連接,由直棱柱的性質(zhì)可知四邊形是矩形,則E為的中點(diǎn).因?yàn)镈是的中點(diǎn),所以,又平面平面,所以平面;【小問(wèn)2詳解】因?yàn)榈酌媸堑冗吶切危珼是的中點(diǎn),所以,由直棱柱的性質(zhì)可知平面平面,平面平面,面,所以平面,取的中點(diǎn)F,連接,則兩兩垂直,故以D為原點(diǎn),分別以的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè),則,從而,設(shè)平面的法向量為,則,令x=2,得,同理平面的一個(gè)法向量為,則cosm由圖可知二面角的平面角為銳角,所以二面角B1-AC-C1的余弦值為.19、(1),(2)【解析】(1)利用可以求出公差,即可求出數(shù)列的通項(xiàng)公式;(2)通過(guò)(1)判斷符號(hào),進(jìn)而分和兩種情況討論求解即可.【小問(wèn)1詳解】解:設(shè)數(shù)列的公差為,,,,【小問(wèn)2詳解】解:由(1)可知,,當(dāng)時(shí),,當(dāng)時(shí),,所以當(dāng)時(shí),,當(dāng)時(shí),所以.20、(1)曲線的直角坐標(biāo)方程為,直線的普通方程為;(2).【解析】(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,結(jié)合加法消元法進(jìn)行求解即可;(2)利用直線參數(shù)方程的意義,結(jié)合一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可.小問(wèn)1詳解】由;;【小問(wèn)2詳解】把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,得,,因?yàn)樵谥本€上,所以,或而,所以.21、(1)證明見(jiàn)解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質(zhì)可證得結(jié)論成立;(2)計(jì)算出三棱錐的體積以及的面積,利用等體積法可求得點(diǎn)到平面的距離.【小問(wèn)1詳解】證明:在正三棱柱,平面,平面,則,因?yàn)槭且詾橹苯琼旤c(diǎn)的等腰直角三角形,則,,則平面,平面,所以,,因?yàn)闉榈冗吶切?,故點(diǎn)為的中點(diǎn).【小問(wèn)2詳解】解:因?yàn)槭沁呴L(zhǎng)為的等邊
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)澆拱形橋梁施工方案
- 信陽(yáng)保溫板施工方案
- 仙桃玻璃鱗片膠泥施工方案
- 火力發(fā)電廠水資源利用市場(chǎng)供需格局及未來(lái)發(fā)展趨勢(shì)報(bào)告
- 江蘇光電材料項(xiàng)目可行性研究報(bào)告
- 節(jié)能評(píng)估資質(zhì)申請(qǐng)報(bào)告
- 2025年中國(guó)2-溴己酸乙酯行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 中國(guó)離子注入機(jī)行業(yè)市場(chǎng)深度分析及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 中國(guó)舾裝行業(yè)發(fā)展前景及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 商業(yè)街區(qū)裝修解約協(xié)議樣本
- TSGD7002-2023-壓力管道元件型式試驗(yàn)規(guī)則
- 2024年度家庭醫(yī)生簽約服務(wù)培訓(xùn)課件
- 建筑工地節(jié)前停工安全檢查表
- 了不起的狐貍爸爸-全文打印
- 液相色譜質(zhì)譜質(zhì)譜儀LCMSMSSYSTEM
- 民辦非企業(yè)單位章程核準(zhǔn)表-空白表格
- 派克與永華互換表
- 第二章流體靜力學(xué)基礎(chǔ)
- 小學(xué)高年級(jí)語(yǔ)文作文情景互動(dòng)教學(xué)策略探究教研課題論文開(kāi)題中期結(jié)題報(bào)告教學(xué)反思經(jīng)驗(yàn)交流
- 春節(jié)新年紅燈籠中國(guó)風(fēng)信紙
- 注塑件生產(chǎn)通用標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論