![新疆烏魯木齊地區(qū)2024屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁](http://file4.renrendoc.com/view/9bd54225a4e1f5915105a1e7bea305ce/9bd54225a4e1f5915105a1e7bea305ce1.gif)
![新疆烏魯木齊地區(qū)2024屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁](http://file4.renrendoc.com/view/9bd54225a4e1f5915105a1e7bea305ce/9bd54225a4e1f5915105a1e7bea305ce2.gif)
![新疆烏魯木齊地區(qū)2024屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁](http://file4.renrendoc.com/view/9bd54225a4e1f5915105a1e7bea305ce/9bd54225a4e1f5915105a1e7bea305ce3.gif)
![新疆烏魯木齊地區(qū)2024屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁](http://file4.renrendoc.com/view/9bd54225a4e1f5915105a1e7bea305ce/9bd54225a4e1f5915105a1e7bea305ce4.gif)
![新疆烏魯木齊地區(qū)2024屆高二數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁](http://file4.renrendoc.com/view/9bd54225a4e1f5915105a1e7bea305ce/9bd54225a4e1f5915105a1e7bea305ce5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆烏魯木齊地區(qū)2024屆高二數(shù)學第一學期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖像大致是()A B.C. D.2.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.453.設m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則4.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A. B.C D.5.小方每次投籃的命中率為,假設每次投籃相互獨立,則他連續(xù)投籃2次,恰有1次命中的概率為()A. B.C. D.6.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④7.已知等差數(shù)列前項和為,且,,則此數(shù)列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項8.函數(shù)的最小值是()A.3 B.4C.5 D.69.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.510.數(shù)列1,,,的一個通項公式可以是()A. B.C. D.11.在空間直角坐標系中,已知,,則MN的中點P到坐標原點О的距離為()A. B.C.2 D.312.已知兩個向量,,且,則的值為()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.從某校隨機抽取某次數(shù)學考試100分以上(含100分,滿分150分)的學生成績,將他們的分數(shù)數(shù)據(jù)繪制成如圖所示頻率分布直方圖.若共抽取了100名學生的成績,則分數(shù)在內的人數(shù)為___________14.寫出一個公比為3,且第三項小于1的等比數(shù)列______15.正三棱柱的底面邊長和高均為2,點為側棱的中點,連接,,則點到平面的距離為______.16.已知函數(shù)滿足:①是奇函數(shù);②當時,.寫出一個滿足條件的函數(shù)________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)四邊形的頂點在橢圓上,且對角線,均過坐標原點,若,求的取值范圍.18.(12分)已知a>0,b>0,a+b=1,求證:.19.(12分)已知函數(shù)(1)求f(x)在點處的切線方程;(2)求證:20.(12分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由21.(12分)如圖長方體中,,,點為的中點.(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.22.(10分)已知是公差不為0的等差數(shù)列,,且成等比數(shù)列(1)求數(shù)列通項公式;(2)設,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導數(shù)探討函數(shù)的單調性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導得,當或時,,當時,,于是得在和上都單調遞增,在上單調遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B2、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:3、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內一直線l,所以,因為l為內一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內一直線l,所以,因為l為內一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關系判斷,意在考查學生對這些知識的理解掌握水平.4、A【解析】把求面積轉化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A5、A【解析】先弄清連續(xù)投籃2次,恰有1次命中的情況有兩種,它們是互斥關系,因此根據(jù)相互獨立事件以及互斥事件的概率計算公式進行求解.【詳解】由題意知,他連續(xù)投籃2次,有兩種互斥的情況,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率為,故選:A.6、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A7、C【解析】設等差數(shù)列的首項為,公差為,,則,又,則,說明數(shù)列為遞減數(shù)列,前6項為正,第7項及后面的項為負,又,則,則在數(shù)列中絕對值最小的項為,選C.8、D【解析】先判斷函數(shù)的單調性,再利用其單調性求最小值【詳解】由,得,因為,所以,所以在上單調遞增,所以,故選:D9、C【解析】依據(jù)拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準線取PQ中點H,分別過P、Q、H作拋物線準線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C10、A【解析】根據(jù)各項的分子和分母特征進行求解判斷即可.【詳解】因為,所以該數(shù)列的一個通項公式可以是;對于選項B:,所以本選項不符合要求;對于選項C:,所以本選項不符合要求;對于選項D:,所以本選項不符合要求,故選:A11、A【解析】利用中點坐標公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標公式,得,所以.故選:A12、C【解析】由,可知,使,利用向量的數(shù)乘運算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點睛】思路點睛:在解決有關平行的問題時,通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉化為方程組求解;本題也可以利用坐標成比例求解,即由,得,求出m,n.二、填空題:本題共4小題,每小題5分,共20分。13、30【解析】根據(jù)頻率分布直方圖中所以小矩形面積和為1,可得a值,根據(jù)總人數(shù)和頻率,即可得答案.【詳解】因為頻率分布直方圖中所以小矩形面積和為1,所以,解得,所以分數(shù)在內的人數(shù)為.故答案為:3014、(答案不唯一)【解析】由條件確定該等比數(shù)列的首項的可能值,由此確定該數(shù)列的通項公式.【詳解】設數(shù)列的公比為,則,由已知可得,∴,所以,故可取,故滿足條件的等比數(shù)列的通項公式可能為,故答案為:(答案不唯一)15、【解析】建立空間直角坐標系,利用空間向量求點面距離的公式可以直接求出.【詳解】如圖,建立空間直角坐標系,為的中點,由已知,,,,,所以,,設平面的法向量為,,即:,取,得,,則點到平面的距離為.故答案為:.16、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調性寫出函數(shù)解析式即可.【詳解】結合冪函數(shù)的性質可知是奇函數(shù),當時,,則符合上述兩個條件,故答案為:(答案不唯一).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,且過點,由求解;(2)設直線AC方程為,則直線BD的方程為,分時,與橢圓方程聯(lián)立求得A,B的坐標,再利用數(shù)量積求解.【小問1詳解】解:因為橢圓的離心率為,且過點,所以,所以,所以橢圓的方程為;【小問2詳解】設直線AC的方程為,則直線BD的方程為.當時,聯(lián)立,得,不妨設A,聯(lián)立,得,當B時,,,當B時,,,當時,同理可得上述結論.綜上,18、見解析【解析】將代入式子,得到,,進而進行化簡,最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當且僅當,即時取“=”19、(1);(2)證明見解析【解析】(1)求導,進而得到,,寫出切線方程;(2)將轉化為,設,,利用導數(shù)法證明.【詳解】(1)函數(shù)的定義域是,可得又,所以f(x)在點處的切線方程為整理得(或斜截式方程)(2)要證只需證因為,所以不等式等價于設,,;所以在單調遞減,在單調遞增故又,;所以在單調遞增,在單調遞減故因為且兩個函數(shù)的最值點不相等所以有,原不等式得證20、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD,設出點M的坐標,由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標原點,直線AB,AD,AA1分別為x軸,y軸,z軸建立空間直角坐標系,因為點E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F(xiàn)所以=,=(0,1,1)設平面EFD的法向量為,則即令y=1,則z=-1,x=2所以,由題知,平面DEC的一個法向量為m=(0,0,1),所以cos<,>==所以平面EFD與平面DEC的夾角的余弦值是(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD設點M的坐標為(0,t,2)(0≤t≤2),則=(,t,2)因為平面EFD的一個法向量為,而與不平行,所以在線段A1D1上不存在點M,使得BM⊥平面EFD21、(1)見解析(2)見解析(3)【解析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結合線面垂直的判定定理證明即可;(3)建立空間直角坐標系,利用向量法求面面角的余弦值即可.【詳解】(1)連接交與點,連接四邊形為正方形,點為的中點又點為的中點,平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標系顯然平面的法向量即為平面的法向量,不妨
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買房車購車合同范例
- 代發(fā)快遞服務合同范本
- 2025年度環(huán)保技術研發(fā)與應用合作合同
- 2025年度國際物流信息平臺進口與實施合同
- 兄弟合伙生意合同范本
- 城市中等裝修房屋出租合同范本
- 入股代理合同范本
- 關于砂石購買標準合同范本
- 出版社教材出版合同范本
- 2025年食品級甘氨酸鈉項目投資可行性研究分析報告
- 政府資金項目(榮譽)申報獎勵辦法
- JJF 1069-2012 法定計量檢定機構考核規(guī)范(培訓講稿)
- 最新如何進行隔代教育專業(yè)知識講座課件
- 當前警察職務犯罪的特征、原因及防范,司法制度論文
- 計算機文化基礎單元設計-windows
- 創(chuàng)建動物保護家園-完整精講版課件
- 廣東省保安服務監(jiān)管信息系統(tǒng)用戶手冊(操作手冊)
- DNA 親子鑒定手冊 模板
- DB33T 1233-2021 基坑工程地下連續(xù)墻技術規(guī)程
- 天津 建設工程委托監(jiān)理合同(示范文本)
- 部編一年級語文下冊教材分析
評論
0/150
提交評論