西南名校聯(lián)盟2023-2024學年數(shù)學高二上期末綜合測試試題含解析_第1頁
西南名校聯(lián)盟2023-2024學年數(shù)學高二上期末綜合測試試題含解析_第2頁
西南名校聯(lián)盟2023-2024學年數(shù)學高二上期末綜合測試試題含解析_第3頁
西南名校聯(lián)盟2023-2024學年數(shù)學高二上期末綜合測試試題含解析_第4頁
西南名校聯(lián)盟2023-2024學年數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

西南名校聯(lián)盟2023-2024學年數(shù)學高二上期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.2.在空間直角坐標系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球3.設(shè)函數(shù),則()A.1 B.5C. D.04.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.5.已知,為橢圓上關(guān)于短軸對稱的兩點,、分別為橢圓的上、下頂點,設(shè),、分別為直線,的斜率,則的最小值為()A. B.C. D.6.若在直線上,則直線的一個方向向量為()A. B.C. D.7.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.8.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A. B.C D.9.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.810.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A B.2C. D.11.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個窗花的圖案,以正六邊形各頂點為圓心、邊長為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點,則此點取自于陰影部分的概率為()A. B.C. D.12.已知某班有學生48人,為了解該班學生視力情況,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學生在樣本中,則樣本中另外一個學生的編號是()A.26 B.27C.28 D.29二、填空題:本題共4小題,每小題5分,共20分。13.當曲線與直線有兩個不同的交點時,實數(shù)k的取值范圍是____________14.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點,點P的坐標為,直線AP交E于另一點C,直線BP交E于另一點D.若直線CD的斜率為,則E的離心率為___________15.雙曲線離心率__________.16.已知點F是拋物線的焦點,點,點P為拋物線上的任意一點,則的最小值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中,.(1)當時,求曲線在點處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.18.(12分)在直三棱柱中,,,,,分別是,上的點,且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值21.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.22.(10分)已知函數(shù).(1)求的導數(shù);(2)求函數(shù)的圖象在點處的切線方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.2、D【解析】方程表示空間中的點到坐標原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D3、B【解析】由題意結(jié)合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.4、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.5、A【解析】設(shè)出點,的坐標,并表示出兩個斜率、,把代數(shù)式轉(zhuǎn)化成與點的坐標相關(guān)的代數(shù)式,再與橢圓有公共點解決即可.【詳解】橢圓中:,設(shè)則,則,,令,則它對應直線由整理得由判別式解得即,則的最小值為故選:A6、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D7、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.8、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A9、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.10、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.11、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計算公式,計算出所求的概率.【詳解】設(shè)正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D12、B【解析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學生來自第三組,設(shè)其編號為,則,進而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學生來自第三組,設(shè)其編號為,則,所以,故選:B【點睛】本題考查系統(tǒng)抽樣的編號,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出直線恒過的定點,結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標系下作圖如下:不妨設(shè)點,直線斜率為,且過點與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設(shè)過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.14、【解析】分別設(shè)線段的中點,線段的中點,再利用點差法可表示出,由平行關(guān)系易知三點共線,從而利用斜率相等的關(guān)系構(gòu)造方程,代入整理可得到關(guān)系,利用雙曲線得到關(guān)于的齊次方程,進而求得離心率.【詳解】設(shè),,線段的中點,兩式相減得:…①設(shè),,線段的中點同理可得:…②,易知三點共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:15、【解析】由已知得到a,b,再利用及即可得到答案.【詳解】由已知,可得,所以,所以.故答案為:16、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準線的垂線,垂足為,連接,則,當且僅當共線時等號成立,故的最小值為3,故答案為:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析.【解析】(1)當時,,求出函數(shù)的導函數(shù),再求出,,再利用點斜式求出切線方程;(2)首先求出函數(shù)的導函數(shù),再對參數(shù)分類討論,求出函數(shù)的單調(diào)區(qū)間;【詳解】解:(1)當時,,所以,所以,,所以切線方程為:,即:(2)函數(shù)定義域為,,因為,①當時,在上恒成立,所以函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;②當時,由得,由得,所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究含參函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點,分別為軸建立空間直角坐標系,如圖,則,,,,,,設(shè),因為,所以,故,得,同理求得,所以,因為是平面的一個法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設(shè)平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設(shè)表示平面與平面所成銳二面角,則19、(1)答案見解析;(2).【解析】(1)求出函數(shù)的定義域為,求得,分、、三種情況討論,分析導數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對實數(shù)分和兩種情況討論,利用導數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗證是否成立,由此可得出實數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域為,.(i)當時,,函數(shù)在上單調(diào)遞增;(ii)當時,令得.若,則;若,則.①當時,,函數(shù)在上單調(diào)遞增;②當時,,當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減;綜上,可得,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當時,單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當時,,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當時,由于,,,所以,存在,使得.當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實數(shù)的取值范圍是.【點睛】本題考查利用導數(shù)求解函數(shù)的單調(diào)區(qū)間,同時也考查了利用導數(shù)研究函數(shù)不等式恒成立問題,考查分類討論思想的應用,屬于難題.20、(1);(2)最大值與最小值分別為與【解析】(1)根據(jù)導數(shù)的幾何意義求出切線的斜率即可求出結(jié)果;(2)利用導數(shù)研究函數(shù)的單調(diào)性,進而結(jié)合函數(shù)的單調(diào)性即可求出最值.【詳解】(1)因為,所以所以所以的圖象在點處的切線方程為,即(2)由(1)知令,則;令,則所以在上單調(diào)遞減,在上單調(diào)遞增.所以又,所以所以在上的最大值與最小值分別為與21、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設(shè),當時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論