版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙江省慈溪市三山高級中學(xué)、奉化高級中學(xué)等六校2023年數(shù)學(xué)高二上期末綜合測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是數(shù)列的前項(xiàng)和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列2.已知橢圓:,左、右焦點(diǎn)分別為,過的直線交橢圓于兩點(diǎn),若的最大值為5,則的值是A.1 B.C. D.3.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d4.現(xiàn)有60瓶飲料,編號從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進(jìn)行檢驗(yàn),則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,305.設(shè)為可導(dǎo)函數(shù),且滿足,則曲線在點(diǎn)處的切線的斜率是A. B.C. D.6.已知雙曲線,過原點(diǎn)作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點(diǎn),以線段為直徑的圓過右焦點(diǎn),則雙曲線的離心率為().A. B.C. D.7.已知實(shí)數(shù)滿足方程,則的最大值為()A.3 B.2C. D.8.已知二次函數(shù)交軸于,兩點(diǎn),交軸于點(diǎn).若圓過,,三點(diǎn),則圓的方程是()A. B.C. D.9.設(shè),是雙曲線()的左、右焦點(diǎn),是坐標(biāo)原點(diǎn).過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.10.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六11.在等差數(shù)列中,,表示數(shù)列的前項(xiàng)和,則()A.43 B.44C.45 D.4612.橢圓C:的焦點(diǎn)在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)過點(diǎn)K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點(diǎn),為拋物線的焦點(diǎn),若|BF|=2|AF|,則cos∠AFB=_______14.已知橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B,且直線l與橢圓交于C,D兩點(diǎn),若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.15.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.16.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng)公式及前項(xiàng)的和.18.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且滿足.(1)證明為等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)在(1)的條件下,設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已如橢圓C:=1(a>b>0)的有頂點(diǎn)為M(2,0),且離心率e=,點(diǎn)A,B是橢圓C上異于點(diǎn)M的不同的兩點(diǎn)(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過定點(diǎn)20.(12分)設(shè)P是拋物線上一個(gè)動點(diǎn),F(xiàn)為拋物線的焦點(diǎn).(1)若點(diǎn)P到直線距離為,求的最小值;(2)若,求的最小值.21.(12分)已知圓C的圓心在直線上,且過點(diǎn),(1)求圓C的方程;(2)過點(diǎn)作圓C的切線,求切線的方程22.(10分)在等差數(shù)列中,已知公差,前項(xiàng)和(其中)(1)求;(2)求和:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由得,然后利用與的關(guān)系即可求出【詳解】因?yàn)椋运援?dāng)時(shí),時(shí),所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點(diǎn)睛】要注意由求要分兩步:1.時(shí),2.時(shí).2、D【解析】由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點(diǎn)的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點(diǎn)在x軸上,∵過F1的直線l交橢圓于A,B兩點(diǎn),則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,此時(shí)|AB|=b2,則5=8﹣b2,解得b,故選D【點(diǎn)睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計(jì)算能力,屬于中檔題3、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項(xiàng),若且,則,所以A選項(xiàng)正確.B選項(xiàng),若,則,所以B選項(xiàng)錯(cuò)誤.C選項(xiàng),如,但,所以C選項(xiàng)錯(cuò)誤.D選項(xiàng),如,但,所以D選項(xiàng)錯(cuò)誤.故選:A4、A【解析】求得組距,由此確定正確選項(xiàng).【詳解】,即組距為,A選項(xiàng)符合,其它選項(xiàng)不符合.故選:A5、D【解析】由題,為可導(dǎo)函數(shù),,即曲線在點(diǎn)處的切線的斜率是,選D【點(diǎn)睛】本題考查導(dǎo)數(shù)的定義,切線的斜率,以及極限的運(yùn)算,本題解題的關(guān)鍵是對所給的極限式進(jìn)行整理,得到符合導(dǎo)數(shù)定義的形式6、A【解析】設(shè)雙曲線的左焦點(diǎn)為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接、,如下圖所示:由題意可知,點(diǎn)為的中點(diǎn),也為的中點(diǎn),且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.7、D【解析】將方程化為,由圓的幾何性質(zhì)可得答案.【詳解】將方程變形為,則圓心坐標(biāo)為,半徑,則圓上的點(diǎn)的橫坐標(biāo)的范圍為:則x的最大值是故選:D.8、C【解析】由已知求得點(diǎn)A、B、C的坐標(biāo),則有AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因?yàn)閳A過,,三點(diǎn),所以AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C9、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點(diǎn)睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題10、C【解析】求出二項(xiàng)式定理的通項(xiàng)公式,得到除以7余數(shù)是1,然后利用周期性進(jìn)行計(jì)算即可【詳解】解:一個(gè)星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:11、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.12、C【解析】根據(jù)橢圓的離心率,即可求出,進(jìn)而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點(diǎn)睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達(dá)定理計(jì)算可得點(diǎn)A,B的坐標(biāo),進(jìn)而求出向量的坐標(biāo),進(jìn)而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點(diǎn)坐標(biāo)分別為,則則.故答案為:14、##0.25【解析】求出點(diǎn)A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計(jì)算作答.【詳解】依題意,點(diǎn),直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:15、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運(yùn)算即可.【詳解】如圖,以C為坐標(biāo)原點(diǎn),所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.16、【解析】根據(jù)互斥事件與對立事件概率公式求解即可【詳解】設(shè)“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對立事件,所以因?yàn)?粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2),.【解析】(1)證明出,即可證得結(jié)論成立;(2)由(1)的結(jié)論并確定數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式,再利用分組求和法可求得.【小問1詳解】證明:因?yàn)閿?shù)列滿足,,則,且,則,,,以此類推可知,對任意的,,所以,,故數(shù)列為等比數(shù)列.【小問2詳解】解:由(1)可知,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,則,所以,,因此,.18、(1)證明見解析,;(2).【解析】(1)利用與的關(guān)系求數(shù)列的遞推關(guān)系,即得證明結(jié)論,并根據(jù)等比數(shù)列求通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果求出,再分和,求.【詳解】(1)當(dāng)時(shí),,,當(dāng)時(shí),,與已知式作差得,即,又,∴,∴,故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,所以(2)由(1)知,∴,若,,若,,∴.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是第二問弄清楚數(shù)列與的前項(xiàng)和的關(guān)系,在分段求數(shù)列的前項(xiàng)和.19、(I);(II)證明見解析.【解析】(I)根據(jù)頂點(diǎn)坐標(biāo)求得,根據(jù)離心率求得,由此求得,進(jìn)而求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出根與系數(shù)關(guān)系,根據(jù),求得的關(guān)系式,由此判斷直線過定點(diǎn).【詳解】(I)由于是橢圓的頂點(diǎn),所以,由于,所以,所以,所以橢圓方程為.(II)由于是橢圓上異于點(diǎn)的不同的兩點(diǎn),所以可設(shè)直線的方程為,設(shè),由消去并化簡得,所以,即.,,,,解得,所以直線的方程為,過定點(diǎn).【點(diǎn)睛】本小題主要考查橢圓方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題.20、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉(zhuǎn)化為求的最小值,即求.(2)判斷點(diǎn)B在拋物線的內(nèi)部,過B作垂直準(zhǔn)線于點(diǎn)Q,交拋物線于點(diǎn),利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點(diǎn)為,準(zhǔn)線方程為.由已知及拋物線的定義,可知,于是問題轉(zhuǎn)化為求的最小值.由平面幾何知識知,當(dāng)F,P,A三點(diǎn)共線時(shí),取得最小值,最小值為,即的最小值為.(2)把點(diǎn)B的橫坐標(biāo)代入中,得,因?yàn)?,所以點(diǎn)B在拋物線的內(nèi)部.過B作垂直準(zhǔn)線于點(diǎn)Q,交拋物線于點(diǎn)(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點(diǎn)睛】本題考查了拋物線的定義,理解定義是解題的關(guān)鍵,屬于基礎(chǔ)題.21、(1)(2)或【解析】(1)由圓心在直線上,設(shè),由點(diǎn)在圓上,列方程求,由此求出圓心坐標(biāo)及半徑,確定圓的方程;(2)當(dāng)切線的斜率存在時(shí),設(shè)其方程為,由切線的性質(zhì)列方程求,再檢驗(yàn)直線是否為切線,由此確定答案.小問1詳解】因?yàn)閳AC的圓心在直線上,設(shè)圓心的坐標(biāo)為,圓C過點(diǎn),,所以,即,解得,則圓心,半徑,所以圓的方程為;【小問2詳解】當(dāng)切線的斜率存在時(shí),設(shè)直線的方程為,即,因?yàn)橹本€和圓相切,得,解得,所以直線方程為,當(dāng)切線的斜率不存在時(shí),易知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 麻雀主題課程設(shè)計(jì)意圖
- 連接板沖壓課程設(shè)計(jì)
- 算法與計(jì)算方法課程設(shè)計(jì)
- 2024年學(xué)校安全工作應(yīng)急預(yù)案
- 2024年一年級語文上全冊各單元測試題分解
- 年度其它新型計(jì)算機(jī)外圍設(shè)備戰(zhàn)略市場規(guī)劃報(bào)告
- 年度碳纖維預(yù)浸布市場分析及競爭策略分析報(bào)告
- 2025年度專業(yè)打印紙銷售渠道建設(shè)合同4篇
- 2025年度新能源項(xiàng)目出借咨詢及項(xiàng)目管理協(xié)議4篇
- 2025年新型門窗安裝工程承包合同4篇
- 2024年6月高考地理真題完全解讀(安徽?。?/a>
- 吸入療法在呼吸康復(fù)應(yīng)用中的中國專家共識2022版
- 1-35kV電纜技術(shù)參數(shù)表
- 信息科技課程標(biāo)準(zhǔn)測(2022版)考試題庫及答案
- 施工組織設(shè)計(jì)方案針對性、完整性
- 2002版干部履歷表(貴州省)
- DL∕T 1909-2018 -48V電力通信直流電源系統(tǒng)技術(shù)規(guī)范
- 2024年服裝制版師(高級)職業(yè)鑒定考試復(fù)習(xí)題庫(含答案)
- 門診部縮短就診等候時(shí)間PDCA案例-課件
- 第21課《鄒忌諷齊王納諫》對比閱讀 部編版語文九年級下冊
- NB-T32042-2018光伏發(fā)電工程建設(shè)監(jiān)理規(guī)范
評論
0/150
提交評論