版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶綦江中學(xué)2024屆高二上數(shù)學(xué)期末聯(lián)考模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若等差數(shù)列的前項(xiàng)和為,首項(xiàng),,,則滿足成立的最大正整數(shù)是()A. B.C. D.2.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項(xiàng)和()A. B.C. D.3.某企業(yè)為節(jié)能減排,用萬元購進(jìn)一臺(tái)新設(shè)備用于生產(chǎn).第一年需運(yùn)營費(fèi)用萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加萬元,該設(shè)備每年生產(chǎn)的收入均為萬元.設(shè)該設(shè)備使用了年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.4.已知點(diǎn)分別是橢圓的左、右焦點(diǎn),點(diǎn)P在此橢圓上,,則的面積等于A. B.C. D.5.圓與圓公切線的條數(shù)為()A.1 B.2C.3 D.46.已知命題:拋物線的焦點(diǎn)坐標(biāo)為;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.7.王昌齡是盛唐著名的邊塞詩人,被譽(yù)為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關(guān).黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要8.若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,則點(diǎn)P(m,n)在直線x+y=4上的概率是()A. B.C. D.9.用反證法證明“若a,b∈R,,則a,b不全為0”時(shí),假設(shè)正確的是()A.a,b中只有一個(gè)為0 B.a,b至少一個(gè)不為0C.a,b至少有一個(gè)為0 D.a,b全為010.在區(qū)間內(nèi)隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.11.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.12.在平面上給定相異兩點(diǎn),設(shè)點(diǎn)在同一平面上且滿足,當(dāng)且時(shí),點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個(gè)圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點(diǎn),為雙曲線的虛軸端點(diǎn),動(dòng)點(diǎn)滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某教師組織本班學(xué)生開展課外實(shí)地測(cè)量活動(dòng),如圖是要測(cè)山高.現(xiàn)選擇點(diǎn)A和另一座山頂點(diǎn)C作為測(cè)量觀測(cè)點(diǎn),從A測(cè)得點(diǎn)M的仰角,點(diǎn)C的仰角,測(cè)得,,已知另一座山高米,則山高_(dá)______米.14.曲線的長度為____________.15.已知函數(shù),有且只有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_______.16.經(jīng)過點(diǎn),的直線的傾斜角為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):?jiǎn)蝺r(jià)x(元)88.28.48.68.89銷量y(件)908483807568(1)求回歸直線方程中的實(shí)數(shù);(2)根據(jù)回歸方程預(yù)測(cè)當(dāng)單價(jià)為10元時(shí)的銷量.18.(12分)在數(shù)列中,,是與的等差中項(xiàng),(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項(xiàng)的和19.(12分)設(shè)等差數(shù)列的前項(xiàng)和為(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和20.(12分)在①,②,③,三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項(xiàng)和為,數(shù)列是等差數(shù)列,其前項(xiàng)和為.已知,,,_____________.(1)請(qǐng)寫出你選擇條件的序號(hào)____________;并求數(shù)列和的通項(xiàng)公式;(2)求和.21.(12分)已知圓與(1)過點(diǎn)作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點(diǎn),求的長22.(10分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項(xiàng)和,確定和的正負(fù)【詳解】∵,∴和異號(hào),又?jǐn)?shù)列是等差數(shù)列,首項(xiàng),∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時(shí)成立的的值,解題時(shí)應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.2、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項(xiàng)和公式求解.【詳解】因?yàn)閿?shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、D【解析】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,則數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列,則,則該設(shè)備使用年的營運(yùn)費(fèi)用總和為,設(shè)第n年的盈利總額為,則,故年平均盈利額為,因?yàn)?,?dāng)且僅當(dāng)時(shí),等號(hào)成立,故當(dāng)時(shí),年平均盈利額取得最大值4.故選:D.【點(diǎn)睛】本題考查等差數(shù)列在實(shí)際問題中的應(yīng)用,注意根據(jù)題設(shè)條件概括出數(shù)列的類型,另外用基本不等式求最值時(shí)注意檢驗(yàn)等號(hào)成立的條件.4、B【解析】根據(jù)橢圓標(biāo)準(zhǔn)方程,可得,結(jié)合定義及余弦定理可求得值,由及三角形面積公式即可求解.【詳解】橢圓則,所以,則由余弦定理可知代入化簡(jiǎn)可得,則,故選:B.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,正弦定理與余弦定理的簡(jiǎn)單應(yīng)用,三角形面積公式的用法,屬于基礎(chǔ)題.5、D【解析】分別求出圓和圓的圓心和半徑,判斷出兩圓的位置關(guān)系可得到公切線的條數(shù).【詳解】根據(jù)題意,圓即,其圓心為,半徑;圓即,其圓心為,半徑;兩圓的圓心距,所以兩圓相離,其公切線條數(shù)有4條;故選:D.6、D【解析】求出的焦點(diǎn)坐標(biāo),及等軸雙曲線的離心率,判斷出為假命題,q為真命題,進(jìn)而判斷出答案.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,故命題為假命題;命題:等軸雙曲線中,,所以離心率為,故命題q為真命題,所以為真命題,其他選項(xiàng)均為假命題.故選:D7、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰(zhàn)死沙場(chǎng);即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B8、D【解析】利用分布計(jì)數(shù)原理求出所有的基本事件個(gè)數(shù),在求出點(diǎn)落在直線x+y=4上包含的基本事件個(gè)數(shù),利用古典概型的概率個(gè)數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個(gè)結(jié)果出現(xiàn)的機(jī)會(huì)都是等可能的,點(diǎn)P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個(gè),所以點(diǎn)P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點(diǎn):古典概型點(diǎn)評(píng):本題考查先判斷出各個(gè)結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題9、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D10、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進(jìn)而根據(jù)面積比求概率.【詳解】由題意知:若兩個(gè)數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C11、C【解析】設(shè)直線的傾斜角為,則,解方程即可.【詳解】由已知,設(shè)直線的傾斜角為,則,又,所以.故選:C12、C【解析】先求動(dòng)點(diǎn)的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡(jiǎn)得,所以動(dòng)點(diǎn)的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點(diǎn)時(shí)的面積最大,所以,解得;當(dāng)位于圓的最左端時(shí)的面積最小,所以,解得,故雙曲線的離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正弦定理可求出各個(gè)三角形的邊長,進(jìn)而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.14、【解析】曲線的圖形是:以原點(diǎn)為圓心,以2為半徑的圓的左半圓,進(jìn)而可求出結(jié)果.【詳解】解:由得,所以曲線()的圖形是:以原點(diǎn)為圓心,以2為半徑的圓的左半圓,∴曲線()的長度是,故答案為:.15、【解析】由題知方程,,有且只有一個(gè)零點(diǎn),進(jìn)而構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性與函數(shù)值得變化情況,作出函數(shù)的大致圖像,數(shù)形結(jié)合求解即可.【詳解】解:因?yàn)楹瘮?shù),,有且只有一個(gè)零點(diǎn),所以方程,,有且只有一個(gè)零點(diǎn),令,則,,令,則所以為上的單調(diào)遞減函數(shù),因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)楫?dāng)趨近于時(shí),趨近于,當(dāng)趨近于時(shí),趨近于,且,時(shí),,故的圖像大致如圖所示,所以方程,,有且只有一個(gè)零點(diǎn)等價(jià)于或.所以實(shí)數(shù)的取值范圍是故答案為:16、【解析】根據(jù)兩點(diǎn)間斜率公式得到斜率,再根據(jù)斜率確定傾斜角大小即可.【詳解】根據(jù)兩點(diǎn)間斜率公式得:,所以直線的傾斜角為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)250.(2)50(件).【解析】(1)數(shù)據(jù)的平均值一定在回歸直線上;(2)將x=10代入回歸方程即可.【小問1詳解】由表中數(shù)據(jù)可得,,,代入,解得.【小問2詳解】由(1)得,故單價(jià)為10元時(shí),.當(dāng)單價(jià)為10元時(shí)銷量為50件.18、(1)證明見解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結(jié)論成立;(2)求出,可計(jì)算得出,利用并項(xiàng)求和法可求得數(shù)列的前項(xiàng)的和.小問1詳解】解:由題意知是與的等差中項(xiàng),可得,可得,則,可得,所以,,又由,可得,所以數(shù)列是首項(xiàng)和公差均為的等差數(shù)列.【小問2詳解】解:由(1)可得:,,對(duì)任意的,,因此,.19、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項(xiàng)和求和公式求出首項(xiàng)和公差,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,再令得出數(shù)列的正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而結(jié)合等差數(shù)列求和公式求得答案.【小問1詳解】設(shè)等差數(shù)列的首項(xiàng)和公差分別為和,∴,解得:所以.【小問2詳解】,所以.當(dāng);當(dāng),當(dāng),時(shí),,當(dāng)時(shí),.綜上:.20、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項(xiàng)公式,再由等差數(shù)列列出方程求出首項(xiàng)與公差可得通項(xiàng)公式,選②③與①相同的方法求數(shù)列的通項(xiàng)公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計(jì)算即可.【小問1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問2詳解】由(1)知,,21、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯(lián)立兩圓方程可得公共弦方程,進(jìn)而可得弦長.【小問1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設(shè)斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問2詳解】聯(lián)立兩圓方程得:,消去二次項(xiàng)得所在直線的方程:,圓的圓心到的距離,所以.22、(1)單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 服務(wù)提供商銷售協(xié)議
- 國防生培養(yǎng)協(xié)議書
- 2024版?zhèn)€人二手車輛轉(zhuǎn)讓合同范本
- 房屋拆遷合同糾紛處理辦法
- 聘用合同范本簡(jiǎn)單2024年
- 代理證券買賣協(xié)議書范本
- 正規(guī)的食堂承包合同范本
- 老人結(jié)伴旅游免責(zé)協(xié)議書
- 施工分包合同書
- 勞務(wù)合同書范本匯編
- 2024年留學(xué)機(jī)構(gòu)項(xiàng)目資金籌措計(jì)劃書代可行性研究報(bào)告
- 2024年江蘇蘇州張家港市人社局招聘公益性崗位(編外)人員2人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024年電梯安全總監(jiān)安全員考試題參考
- 學(xué)習(xí)解讀2024年《關(guān)于深化產(chǎn)業(yè)工人隊(duì)伍建設(shè)改革的意見》課件
- 浪潮人力崗在線測(cè)評(píng)題
- 期中 (試題) -2024-2025學(xué)年人教PEP版(2024)英語三年級(jí)上冊(cè)
- 貿(mào)易公司聘用勞動(dòng)合同書(3篇)
- 嶺南版2年級(jí)上冊(cè)美術(shù) 9我家的菜籃子 說課 教案
- 2023年中國海洋石油集團(tuán)有限公司招聘筆試真題
- 《ISO 55001-2024資產(chǎn)管理-資產(chǎn)管理體系-要求》之1:“4 組織環(huán)境-4.1理解組織及其環(huán)境”解讀和應(yīng)用指導(dǎo)材料(雷澤佳-2024)
- 2024年南昌市南昌縣城管委招考編外城管協(xié)管員高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
評(píng)論
0/150
提交評(píng)論