七年級數(shù)學下冊期末壓軸題考試題及答案培優(yōu)試卷_第1頁
七年級數(shù)學下冊期末壓軸題考試題及答案培優(yōu)試卷_第2頁
七年級數(shù)學下冊期末壓軸題考試題及答案培優(yōu)試卷_第3頁
七年級數(shù)學下冊期末壓軸題考試題及答案培優(yōu)試卷_第4頁
七年級數(shù)學下冊期末壓軸題考試題及答案培優(yōu)試卷_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、解答題1.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接寫出點A、B的坐標;(2)點C為x軸負半軸上一點滿足S△ABC=15.①如圖1,平移直線AB經(jīng)過點C,交y軸于點E,求點E的坐標;②如圖2,若點F(m,10)滿足S△ACF=10,求m.(3)如圖3,D為x軸上B點右側(cè)的點,把點A沿y軸負半軸方向平移,過點A作x軸的平行線l,在直線l上取兩點G、H(點H在點G右側(cè)),滿足HB=8,GD=6.當點A平移到某一位置時,四邊形BDHG的面積有最大值,直接寫出面積的最大值.2.已知,AB∥CD,點E在CD上,點G,F(xiàn)在AB上,點H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).3.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).4.綜合與實踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識,是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.5.已知:直線AB∥CD,直線MN分別交AB、CD于點E、F,作射線EG平分∠BEF交CD于G,過點F作FH⊥MN交EG于H.(1)當點H在線段EG上時,如圖1①當∠BEG=時,則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.(2)當點H在線段EG的延長線上時,請先在圖2中補全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關(guān)系.6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把(a≠0)記作a?,讀作“a的圈

n次方”.(初步探究)(1)直接寫出計算結(jié)果:2③=___,()⑤=___;(2)關(guān)于除方,下列說法錯誤的是___A.任何非零數(shù)的圈2次方都等于1;

B.對于任何正整數(shù)n,1?=1;C.3④=4③;

D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.(-3)④=___;

5⑥=___;(-)⑩=___.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于___;(3)算一算:÷(?)④×(?2)⑤?(?)⑥÷8.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.9.對數(shù)運算是高中常用的一種重要運算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時log10N可記為lgN.當a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)10.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.11.觀察下來等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數(shù)字分別是對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.(1)根據(jù)以上各等式反映的規(guī)律,使下面等式成為“數(shù)字對稱等式”:52×_____=______×25;(2)設(shè)這類等式左邊的兩位數(shù)中,個位數(shù)字為a,十位數(shù)字為b,且2≤a+b≤9,則用含a,b的式子表示這類“數(shù)字對稱等式”的規(guī)律是_______.12.如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:令S=1+2+4+8+16+…+230…①等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請根據(jù)以上的解答過程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.13.已知、兩點的坐標分別為,,將線段水平向右平移到,連接,,得四邊形,且.(1)點的坐標為______,點D的坐標為______;(2)如圖1,軸于,上有一動點,連接、,求最小時點位置及其坐標,并說明理由;(3)如圖2,為軸上一點,若平分,且于,.求與之間的數(shù)量關(guān)系.14.如圖,已知//,點是射線上一動點(與點不重合),分別平分和,分別交射線于點.(1)當時,的度數(shù)是_______;(2)當,求的度數(shù)(用的代數(shù)式表示);(3)當點運動時,與的度數(shù)之比是否隨點的運動而發(fā)生變化?若不變化,請求出這個比值;若變化,請寫出變化規(guī)律.(4)當點運動到使時,請直接寫出的度數(shù).15.如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為且、滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標為___________;當點移動5秒時,點的坐標為___________;(2)在移動過程中,當點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.16.如果x是一個有理數(shù),我們定義x表示不小于x的最小整數(shù).如3.24,2.62,55,66.由定義可知,任意一個有理數(shù)都能寫成xxb的形式(0≤b<1).(1)直接寫出x與x,x1的大小關(guān)系;提示1:用“不完全歸納法”推導(dǎo)x與x,x1的大小關(guān)系;提示2:用“代數(shù)推理”的方法推導(dǎo)x與x,x1的大小關(guān)系.(2)根據(jù)(1)中的結(jié)論解決下列問題:①直接寫出滿足3m74的m取值范圍;②直接寫出方程3.5n22n1的解..17.如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點B出發(fā),沿“BC→CD”移動.若點P的速度為每秒1個單位長度,運動時間為t秒,回答下列問題:①當t=秒時,點P的橫坐標與縱坐標互為相反數(shù);②求點P在運動過程中的坐標,(用含t的式子表示,寫出過程);③當點P運動到CD上時,設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.18.如圖,在平面直角坐標系中,O為坐標原點,點,其中滿足,D為直線AB與軸的交點,C為線段AB上一點,其縱坐標為.(1)求的值;(2)當為何值時,和面積的相等;(3)若點C坐標為(-2,1),點M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)19.為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按a元/米3收費;每戶每月用水量超過6米3時,不超過的部分每立方米仍按a元收費,超過的部分按c元/米3收費,該市某用戶今年3、4月份的用水量和水費如下表所示:月份用水量(m3)收費(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時,水費與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費.20.數(shù)軸上有兩個動點M,N,如果點M始終在點N的左側(cè),我們稱作點M是點N的“追趕點”.如圖,數(shù)軸上有2個點A,B,它們表示的數(shù)分別為-3,1,已知點M是點N的“追趕點”,且M,N表示的數(shù)分別為m,n.(1)由題意得:點A是點B的“追趕點”,AB=1-(-3)=4(AB表示線段AB的長,以下相同);類似的,MN=____________.(2)在A,M,N三點中,若其中一個點是另外兩個點所構(gòu)成線段的中點,請用含m的代數(shù)式來表示n.(3)若AM=BN,MN=BM,求m和n值.21.一個四位正整數(shù),若其千位上與百位上的數(shù)字之和等于十位上與個位上的數(shù)字之和,都等于k,那么稱這個四位正整數(shù)為“k類誠勤數(shù)”,例如:2534,因為,所以2534是“7類誠勤數(shù)”.(1)請判斷7441和5436是否為“誠勤數(shù)”并說明理由;(2)若一個四位正整數(shù)A為“5類誠勤數(shù)”且能被13整除,請求出的所有可能取值.22.已知,在平面直角坐標系中,三角形三個頂點的坐標分別為,,,軸,且、滿足.(1)則______;______;______;(2)如圖1,在軸上是否存在點,使三角形的面積等于三角形的面積?若存在,請求出點的坐標;若不存在,請說明理由;(3)如圖2,連接交于點,點在軸上,若三角形的面積小于三角形的面積,直接寫出的取值范圍是______.23.在平面直角坐標系中,把線段先向右平移h個單位,再向下平移1個單位得到線段(點A對應(yīng)點C),其中分別是第三象限與第二象限內(nèi)的點.(1)若,求C點的坐標;(2)若,連接,過點B作的垂線l①判斷直線l與x軸的位置關(guān)系,并說明理由;②已知E是直線l上一點,連接,且的最小值為1,若點B,D及點都是關(guān)于x,y的二元一次方程的解為坐標的點,試判斷是正數(shù)?負數(shù)還是0?并說明理由.24.閱讀感悟:有些關(guān)于方程組的問題,要求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù)、滿足①,②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得、的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.解決問題:(1)已知二元一次方程組,則_______,_______;(2)某班級組織活動購買小獎品,買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元,則購買6支水筆、6塊橡皮、6本記事本共需多少元?(3)對于實數(shù)、,定義新運算:,其中、、是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么_______.25.若任意一個代數(shù)式,在給定的范圍內(nèi)求得的最大值和最小值恰好也在該范圍內(nèi),則稱這個代數(shù)式是這個范圍的“湘一代數(shù)式”.例如:關(guān)于x的代數(shù)式,當1x1時,代數(shù)式在x1時有最大值,最大值為1;在x0時有最小值,最小值為0,此時最值1,0均在1x1這個范圍內(nèi),則稱代數(shù)式是1x1的“湘一代數(shù)式”.(1)若關(guān)于的代數(shù)式,當時,取得的最大值為,最小值為,所以代數(shù)式(填“是”或“不是”)的“湘一代數(shù)式”.(2)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求a的最大值與最小值.(3)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求m的取值范圍.26.如圖,在平面直角坐標系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應(yīng),點C與點B對應(yīng),連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標;(2)設(shè)三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設(shè),請給出,滿足的數(shù)量關(guān)系式,并說明理由.27.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.請你解決下列問題:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范圍是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.28.在平面直角坐標系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.29.在平面直角坐標系中,對于任意兩點,,如果,則稱與互為“距點”.例如:點,點,由,可得點與互為“距點”.(1)在點,,中,原點的“距點”是_____(填字母);(2)已知點,點,過點作平行于軸的直線.①當時,直線上點的“距點”的坐標為_____;②若直線上存在點的“點”,求的取值范圍.(3)已知點,,,的半徑為,若在線段上存在點,在上存在點,使得點與點互為“距點”,直接寫出的取值范圍.30.已知,在平面直角坐標系中,AB⊥x軸于點B,點A滿足,平移線段AB使點A與原點重合,點B的對應(yīng)點為點C.(1)則a=,b=,點C坐標為;(2)如圖1,點D(m,n)在線段BC上,求m,n滿足的關(guān)系式;(3)如圖2,E是線段OB上一動點,以O(shè)B為邊作∠BOG=∠AOB,交BC于點G,連CE交OG于點F,當點E在線段OB上運動過程中,的值是否會發(fā)生變化?若變化請說明理由,若不變,請求出其值.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根據(jù)二次根式和偶次冪的非負性得出a,b解答即可;(2)①根據(jù)三角形的面積公式得出點C的坐標,根據(jù)平行線的性質(zhì)解答即可;②延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,根據(jù)三角形面積公式解答即可;(3)平移GH到DM,連接HM,根據(jù)三角形面積公式解答即可.【詳解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①連接BE,如圖1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴點F在過點G(0,10)且平行于x軸的直線l上,延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,則M(a,0),如圖2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,連接HM,則GD∥HM,GD=HM,如圖3,四邊形BDHG的面積=△BHM的面積,當BH⊥HM時,△BHM的面積最大,其最大值=.【點睛】本題主要考查圖形與坐標及平移的性質(zhì),熟練掌握圖形與坐標及平移的性質(zhì)是解題的關(guān)鍵.2.(1)見解析;(2)見解析;(3)40°【分析】(1)根據(jù)平行線的性質(zhì)和判定解答即可;(2)過點H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可;(3)過點H作HP∥AB,根據(jù)平行線的性質(zhì)解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點M作MQ∥AB,過點H作HP∥AB,由∠KFE:∠MGH=13:5,設(shè)∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點睛】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定與性質(zhì)定理以及靈活構(gòu)造平行線是解題的關(guān)鍵.3.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.4.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.5.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結(jié)論.②利用平行線的性質(zhì)證明即可.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.利用平行線的性質(zhì)證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結(jié)論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結(jié)論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點睛】本題考查平行線的性質(zhì),角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根據(jù)除方運算的定義即可得出答案;(2)根據(jù)除方運算的定義逐一判斷即可得出答案;深入思考:(1)根據(jù)除方運算的定義即可得出答案;(2)根據(jù)(1)即可總結(jié)出(2)中的規(guī)律;(3)先按照除方的定義將每個數(shù)的圈n次方算出來,再根據(jù)有理數(shù)的混合運算法則即可得出答案.【詳解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零數(shù)的圈2次方就是兩個相同數(shù)相除,所以都等于1,故選項A錯誤;B:因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1,故選項B錯誤;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故選項C正確;D:負數(shù)的圈奇數(shù)次方,相當于奇數(shù)個負數(shù)相除,則結(jié)果是負數(shù);負數(shù)的圈偶數(shù)次方,相當于偶數(shù)個負數(shù)相除,則結(jié)果是正數(shù),故選項D錯誤;故答案選擇:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=

5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)a?=a÷a÷a…÷a=(3)原式====-5【點睛】本題主要考查了除方運算,運用到的知識點是有理數(shù)的混合運算,掌握有理數(shù)混合運算的法則是解決本題的關(guān)鍵.8.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關(guān)鍵.9.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.10.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關(guān)鍵.11.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數(shù)所乘的數(shù)是這個兩位數(shù)的個位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭€位數(shù)字,兩個數(shù)字的和放在十位;等式的右邊:三位數(shù)與左邊的三位數(shù)字百位與個位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個位數(shù)字交換然后相乘,根據(jù)此規(guī)律進行填空即可;(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行寫出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,∴52×275=572×25,(2)左邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b;右邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a;“數(shù)字對稱等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點睛】本題是對數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個位數(shù)字變化得到其它的三個數(shù)字是解題的關(guān)鍵.12.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點睛】本題考查了整式的混合運算的應(yīng)用,主要考查學生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.13.(1),;(2),理由見解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長度,即可得到D、C的坐標;(2)連接BD與直線CG相交,其交點Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點坐標;(3)過H作HF∥AB,過C作CM∥ED,則根據(jù)已知條件、平行線的性質(zhì)和角的有關(guān)知識可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點坐標為(-4+6,-1)即(2,-1),D點坐標為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時最?。▋牲c之間,線段最短),過作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過作,又∵,∴,∴,∴.過作,∴,.∵于,∴,∴,∴,又∵,∴.【點睛】本題考查平行線的綜合應(yīng)用,熟練掌握平行線的判定與性質(zhì)、平移坐標變換規(guī)律、兩點之間線段最短的性質(zhì)、角的有關(guān)知識和運算是解題關(guān)鍵.14.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當∠ACB=∠ABD時有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質(zhì)可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當∠ACB=∠ABD時,則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點睛】本題主要考查平行線的性質(zhì)和角平分線的定義,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.15.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點B的坐標;由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標;(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質(zhì),三角形的面積,坐標與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.16.(1);(2)①;②或.【分析】(1)提示1:先列出4個x的值,分別得出與的大小關(guān)系,再利用“不完全歸納法”即可得;提示2:先根據(jù)“”得出,再根據(jù)“”即可得;(2)①根據(jù)(1)的結(jié)論得出,據(jù)此解不等式組即可得;②先根據(jù)(1)的結(jié)論得出,再解不等式組求出n的取值范圍,從而可得的取值范圍,然后根據(jù)“為整數(shù)”可得出方程,由此解方程即可得.【詳解】(1)提示1:當時,,則當時,,則當時,,則當時,,則由“不完全歸納法”可得:;提示2:,且;(2)①由(1)的結(jié)論得:解得;②由(1)的結(jié)論得:解得為整數(shù)則或解得或.【點睛】本題考查了一元一次不等式組的應(yīng)用、解一元一次方程等知識點,理解新定義,正確求解不等式組是解題關(guān)鍵.17.(1)(-2,0);(2)①t=2;②當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);③能確定,z=x+y.【分析】(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;(2)①由點C的坐標為(-3,2).得到BC=3,CD=2,由于點P的橫坐標與縱坐標互為相反數(shù);于是確定點P在線段BC上,有PB=CD,即可得到結(jié)果;②當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.【詳解】解:(1)根據(jù)題意,可得三角形OAB沿x軸負方向平移3個單位得到三角形DEC,∵點A的坐標是(1,0),∴點E的坐標是(-2,0);故答案為:(-2,0);(2)①∵點C的坐標為(-3,2)∴BC=3,CD=2,∵點P的橫坐標與縱坐標互為相反數(shù);∴點P在線段BC上,∴PB=CD,即t=2;∴當t=2秒時,點P的橫坐標與縱坐標互為相反數(shù);故答案為:2;②當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【點睛】本題考查了坐標與圖形的性質(zhì),坐標與圖形的變化-平移,平行線的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.18.(1);(2)當時,和面積的相等;(3)m的取值范圍是【分析】(1)利用非負數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點D的坐標為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當-2<m<0時,如圖1中,②當m≤-2時,如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點D的坐標為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點D的坐標為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當t=1時,△BOC和△AOD面積的相等;(3)①當-2<m<0時,如圖1中,過點C作CF⊥軸于點F,過點M作GE⊥軸于點E,過點C作CG⊥軸交GE于點G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當m≤-2時,如圖2中,過點C作GF⊥軸于點F,過點M作ME⊥軸于點E,過點M作MG⊥軸交GF于點G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點睛】本題考查了坐標與圖形的性質(zhì),三角形的面積,非負數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會利用參數(shù),構(gòu)建方程解決問題,屬于中考壓軸題.19.(1);0≤x≤6時,y=1.5x;x>6時,y=6x-27;(2)該戶5月份水費是21元.【分析】(1)根據(jù)3、4兩個月的用水量和相應(yīng)水費列方程組求解可得a、c的值;當0≤x≤6時,水費=用水量×此時單價;當x>6時,水費=前6立方水費+超出部分水費,據(jù)此列式即可;(2)x=8代入x>6時y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當0≤x≤6時,y=1.5x;當x>6時,y=1.5×6+6(x-6)=6x-27;(2)當x=8時,y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費是21元.【點睛】本題主要考查利用一次函數(shù)的模型解決實際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實際意義準確的列出解析式,再把對應(yīng)值代入求解.20.(1)n-m;(2)①M是AN的中點,n=2m+3;②A是MN中點,n=-m-6;③N是AM的中點,;(3)或或.【分析】(1)由兩點間距離直接求解即可;(2)分三種情況討論:①M是A、N的中點,n=2m+3;②當A點在M、N點中點時,n=﹣6﹣m;③N是M、A的中點時,n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情況求解即可.【詳解】(1)MN=n﹣m.故答案為:n﹣m;(2)分三種情況討論:①M是A、N的中點,∴n+(-3)=2m,∴n=2m+3;②A是M、N點中點時,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中點時,-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MNBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【點睛】本題考查了列代數(shù)式,解二元一次方程組以及數(shù)軸上兩點間的距離公式,解答本題的關(guān)鍵是:(1)根據(jù)兩點間的距離公式求出線段AB的長;(2)分三種情況討論;(3)分四種情況討論.解決該題型題目時,結(jié)合數(shù)量關(guān)系表示出線段的長度,再根據(jù)線段間的關(guān)系列出方程是關(guān)鍵.21.(1)7441不是“誠勤數(shù)”;5463是“誠勤數(shù)”;(2)滿足條件的A為:2314或5005或3250.【分析】(1)直接利用定義進行驗證,即可得到答案;(2)由題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),然后根據(jù)13的倍數(shù)關(guān)系,以及“5類誠勤數(shù)”的定義,利用分類討論的進行分析,即可得到答案.【詳解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“誠勤數(shù)”;在5436中,∵5+4=6+3=9,∴5463是“誠勤數(shù)”;(2)根據(jù)題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),且,,∴這個四位數(shù)為:,∵,,∴,∵這個四位數(shù)是13的倍數(shù),∴必須是13的倍數(shù);∵,,∴在時,取到最大值60,∴可以為:2、15、28、41、54,∵,則是3的倍數(shù),∴或,∴或;①當時,,∵,且a為非負整數(shù),∴或,∴或,若,則,此時;若,則,此時;②當時,,∵,且a為非負整數(shù),∴是3的倍數(shù),且,∴,∴,則,∴;綜合上述,滿足條件的A為:2314或5005或3250.【點睛】本題考查了二元一次方程,新定義的運算法則,解題的關(guān)鍵是熟練掌握題意,正確列出二元一次方程,結(jié)合新定義,利用分類討論的思想進行解題.22.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負數(shù)的性質(zhì)構(gòu)建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).當點D在直線AB的上方時,如圖1?2中,連接OB,設(shè)D(0,m).分別構(gòu)建方程,可得結(jié)論.(3)如圖2中,當點N在點A的右側(cè)時,連接MN,OB,設(shè)M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時,n的值,同法求出當點N在點的左側(cè)時,且S△BNM=S△BCM時,n的值,結(jié)合圖象可得結(jié)論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當點D在直線AB的上方時,如圖1?2中,連接OB,設(shè)D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿足條件的點D的坐標為(0,)或(0,).(3)如圖2中,當點N點A的右側(cè)時,連接MN,OB.設(shè)M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當S△BNM=S△BCM時,則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當點N在點A的左側(cè)時,且S△BNM=S△BCM時,同法可得n=?5,觀察圖象可知,滿足條件的n的值為n<?5或n>?1.【點睛】本題屬于三角形綜合題,考查了三角形的面積,非負數(shù)的性質(zhì),平行線的性質(zhì)等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題,學會利用未知數(shù)構(gòu)建方程解決問題,對于初一學生來說題目有一定的難度.23.(1)(-1,-2);(2)①結(jié)論:直線l⊥x軸.證明見解析;②結(jié)論:(s-m)+(t-n)=0.證明見解析【分析】(1)利用非負數(shù)的性質(zhì)求出a,b的值,可得結(jié)論.(2)①求出A,D的縱坐標,證明AD∥x軸,可得結(jié)論.②判斷出D(m+1,n-1),利用待定系數(shù)法,構(gòu)建方程組解決問題即可.【詳解】解:(1),又,,,,,點先向右平移2個單位,再向下平移1個單位得到點,.(2)①結(jié)論:直線軸.理由:,,,向右平移個單位,再向下平移1個單位得到點,,,的縱坐標相同,軸,直線,直線軸.②結(jié)論:.理由:是直線上一點,連接,且的最小值為1,,點,及點都是關(guān)于,的二元一次方程的解為坐標的點,,①②得到,,③②得到,,,,.【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質(zhì),待定系數(shù)法等知識,解題的關(guān)鍵是熟練掌握平移變換的性質(zhì),學會利用參數(shù)解決問題,屬于中考??碱}型.24.(1);5;(2)購買6支水筆、6塊橡皮、6本記事本共需48元;(3).【分析】(1)利用①?②可得x-y的值,利用可得出x+y的值;(2)設(shè)鉛筆的單價為m元,橡皮的單價為元,記事本的單價為元,根據(jù)“買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元”,即可得出關(guān)于m,n,p的三元一次方程組,由2×①-②可得的值,再乘5即可求得結(jié)果;(3)根據(jù)新運算的定義可得出關(guān)于a,b,c的三元一次方程組,由3×①?2×②可得出的值,從而可求得結(jié)果.【詳解】(1)由①?②可得:x-y=-1,由可得x+y=5故答案為:;5.(2)設(shè)水筆的單價為元,橡皮的單價為元,記事本的單價為元,依題意,得:,由可得,.故購買6支水筆、6塊橡皮、6本記事本共需48元.(3)依題意得:由3×①?2×②可得:即故答案為:.【點睛】本題考查了二元一次方程組的應(yīng)用及三元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)運用“整體思想”求出x-y,x+y的值;(2)(3)找出等量關(guān)系,正確列出三元一次方程組.25.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當時,的最大值與最小值,再根據(jù)定義判斷即可;(2)當時,得分<,分別求解在內(nèi)時的最大值與最小值,再列不等式組即可得到答案;(3)當時,分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當時,取最大值,當時,取最小值所以代數(shù)式是的“湘一代數(shù)式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當a≥0時,x=0時,有最大值為,x=2或-2時,有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時,x=0時,有最小值為,x=2或-2時,的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數(shù)式”,當時,的最大值是最小值是當時,當時,取最小值當時,取最大值,解得:綜上:的取值范圍是:【點睛】本題考查的是新定義情境下的不等式或不等式組的應(yīng)用,理解定義列不等式(組)是解題的關(guān)鍵.26.(1);(2);(3)當點C在x軸的正半軸上時,;當點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質(zhì)可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質(zhì)可得AD∥BC.分兩種情況:當點C在x軸的正半軸上時;當點C在點A和點O之間時.由平行線的性質(zhì)可求解.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論