版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
上海市閔行八校2023屆高三5月階段性模塊監(jiān)測數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,集合,則()A. B. C. D.2.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.3.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.4.已知函數(shù)滿足當(dāng)時,,且當(dāng)時,;當(dāng)時,且).若函數(shù)的圖象上關(guān)于原點(diǎn)對稱的點(diǎn)恰好有3對,則的取值范圍是()A. B. C. D.5.下圖為一個正四面體的側(cè)面展開圖,為的中點(diǎn),則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.6.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件7.已知集合,集合,則()A. B. C. D.8.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β9.一個封閉的棱長為2的正方體容器,當(dāng)水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.10.已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.11.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.1412.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點(diǎn)和點(diǎn)為某個等腰三角形的三個頂點(diǎn),則雙曲線C的離心率為________.14.某校高二(4)班統(tǒng)計(jì)全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.15.已知函數(shù),則不等式的解集為____________.16.已知橢圓,,若橢圓上存在點(diǎn)使得為等邊三角形(為原點(diǎn)),則橢圓的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.18.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.19.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.20.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.21.(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),.(1)求,;(2)猜想的表達(dá)式,并證明你的結(jié)論.22.(10分)網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機(jī)器故障進(jìn)行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實(shí)地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機(jī)構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實(shí)地看病的滿意程度,在每種看病方式的患者中各隨機(jī)抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實(shí)地看病兩種方式進(jìn)行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實(shí)地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計(jì)網(wǎng)絡(luò)看病實(shí)地看病總計(jì)并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機(jī)抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.2、D【解析】
設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.3、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.4、C【解析】
先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對稱的圖象,分類利用圖像列出有3個交點(diǎn)時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對稱的圖象,如圖所示,當(dāng)時,對稱后的圖象不可能與在的圖象有3個交點(diǎn);當(dāng)時,要使函數(shù)關(guān)于原點(diǎn)對稱后的圖象與所作的圖象有3個交點(diǎn),則,解得.故選:C.【點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.5、C【解析】
將正四面體的展開圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點(diǎn)睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.6、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.7、C【解析】
求出集合的等價條件,利用交集的定義進(jìn)行求解即可.【詳解】解:∵,,∴,故選:C.【點(diǎn)睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運(yùn)算,屬于基礎(chǔ)題.8、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.9、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.10、C【解析】
由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼牵?,又由余弦定理,?dāng)且僅當(dāng)時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.11、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.12、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理和多項(xiàng)式乘法是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由等腰三角形及雙曲線的對稱性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點(diǎn)分別為,,因?yàn)樽蟆⒂医裹c(diǎn)和點(diǎn)為某個等腰三角形的三個頂點(diǎn),當(dāng)時,,由可得,等式兩邊同除可得,解得(舍);當(dāng)時,,由可得,等式兩邊同除可得,解得,故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.14、7.5【解析】
分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點(diǎn)睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計(jì)算出所有數(shù)據(jù)之和,易錯點(diǎn)在于概念辨析不清導(dǎo)致計(jì)算出錯.15、【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計(jì)算能力,是一道中檔題.16、【解析】
根據(jù)題意求出點(diǎn)N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計(jì)算得到答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【詳解】(1)當(dāng)時,由,解得;當(dāng)時,由,解得;當(dāng)時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當(dāng)時,,所以.因?yàn)?,由,可知,所以,?dāng)且僅當(dāng),,時,等號成立.所以的最小值為.【點(diǎn)睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對于不等式,函數(shù)知識的綜合應(yīng)用.18、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時,,當(dāng),,當(dāng)時,,所以解法二:(1)如圖當(dāng)時,解法三:(1)當(dāng)且僅當(dāng)即時,等號成立.當(dāng)時解法一:(2)由題意可知,,因?yàn)椋?,,所以要證明不等式,只需證明,因?yàn)槌闪?,所以原不等式成?解法二:(2)因?yàn)椋?,,所以,,又因?yàn)?,所以,所以,原不等式得證.補(bǔ)充:解法三:(2)由題意可知,,因?yàn)椋?,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點(diǎn)睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運(yùn)算求解能力.19、(1)見解析(2)【解析】
(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫?,所以,又因?yàn)?,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點(diǎn)睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.20、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時,則在單調(diào)遞減,當(dāng)時,則在單調(diào)遞增,所以,當(dāng)時,,即,則在上單調(diào)遞增,當(dāng)時,,易知當(dāng)時,,當(dāng)時,,由零點(diǎn)存在性定理知,,不妨設(shè),使得,當(dāng)時,,即,當(dāng)時,,即,當(dāng)時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.21、,;,證明見解析【解析】
對函數(shù)進(jìn)行求導(dǎo),并通過三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式,對函數(shù)再進(jìn)行求導(dǎo)并通過三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式;根據(jù)中,的表達(dá)式進(jìn)行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數(shù)學(xué)歸納法證明:①當(dāng)時,成立,②假設(shè)時,猜想成立即當(dāng)時,當(dāng)時,猜想成立由①②對成立【點(diǎn)睛】本題考查導(dǎo)數(shù)及其應(yīng)用、三角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;熟練掌握用數(shù)學(xué)歸納法進(jìn)行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.22、(1)實(shí)地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對實(shí)地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨(dú)立性檢驗(yàn)得有的把握認(rèn)為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實(shí)地看病滿意度更高,理由如下:(i)由莖葉圖可知:在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋七年級英語上冊 Unit 4 Food and Restaurants Lesson 23 The Corner Store說課稿 (新版)冀教版
- 《6的乘法口訣》(說課稿)-2024-2025學(xué)年二年級上冊數(shù)學(xué)青島版
- 2023三年級英語下冊 Unit 2 I'm in Class One Grade Three Lesson 7說課稿 人教精通版(三起)
- 《2 我們的課余生活》(說課稿)-2023-2024學(xué)年四年級上冊綜合實(shí)踐活動吉美版001
- Unit 2 Different Families 第1課時(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 60米短跑 說課稿-2023-2024學(xué)年高三上學(xué)期體育與健康人教版必修第一冊
- 2025關(guān)于質(zhì)押反擔(dān)保合同
- Unit 2 Healthy Lifestyle Using language Listening and Speaking 說課稿-2023-2024學(xué)年高中英語人教版(2019)選擇性必修第三冊
- 長沙打包箱房施工方案
- 2024-2025學(xué)年高中歷史 第五單元 無產(chǎn)階級革命家 第2課 無產(chǎn)階級革命導(dǎo)師恩格斯教學(xué)說課稿 新人教版選修4
- 2023年珠海市招考合同制職員筆試參考題庫(共500題)答案詳解版
- 心電監(jiān)護(hù)考核標(biāo)準(zhǔn)
- 特種行業(yè)許可證申請表
- 古典芭蕾:基本技巧和術(shù)語
- 有限空間作業(yè)審批表
- 內(nèi)地居民前往香港或者澳門定居申請表
- DB43-T 2612-2023林下竹蓀栽培技術(shù)規(guī)程
- 三下《動物的一生》教材解讀
- 神木市孫家岔鎮(zhèn)神能乾安煤礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 非煤礦山安全應(yīng)急預(yù)案
- 浙江省公安民警心理測驗(yàn)考試題目
評論
0/150
提交評論