2023屆遼寧省阜新二高高三數(shù)學(xué)試題月考試卷試卷_第1頁(yè)
2023屆遼寧省阜新二高高三數(shù)學(xué)試題月考試卷試卷_第2頁(yè)
2023屆遼寧省阜新二高高三數(shù)學(xué)試題月考試卷試卷_第3頁(yè)
2023屆遼寧省阜新二高高三數(shù)學(xué)試題月考試卷試卷_第4頁(yè)
2023屆遼寧省阜新二高高三數(shù)學(xué)試題月考試卷試卷_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆遼寧省阜新二高高三數(shù)學(xué)試題月考試卷試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.網(wǎng)格紙上小正方形邊長(zhǎng)為1單位長(zhǎng)度,粗線畫(huà)出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.42.是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則()A. B. C. D.3.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對(duì)今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽(yáng)太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長(zhǎng)為,陰陽(yáng)太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.4.如圖在直角坐標(biāo)系中,過(guò)原點(diǎn)作曲線的切線,切點(diǎn)為,過(guò)點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.5.已知向量,若,則實(shí)數(shù)的值為()A. B. C. D.6.連接雙曲線及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為()A. B. C. D.7.()A. B. C. D.8.已知集合則()A. B. C. D.9.的展開(kāi)式中的系數(shù)為()A.-30 B.-40 C.40 D.5010.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),所在直線的斜率為()A. B. C. D.11.已知,若,則等于()A.3 B.4 C.5 D.612.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.6二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,與都是邊長(zhǎng)為2的等邊三角形,且平面平面,則該四面體外接球的體積為_(kāi)______.14.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____15.在棱長(zhǎng)為的正方體中,是正方形的中心,為的中點(diǎn),過(guò)的平面與直線垂直,則平面截正方體所得的截面面積為_(kāi)_____.16.雙曲線的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且周長(zhǎng)的最小值為8,則雙曲線的實(shí)軸長(zhǎng)為_(kāi)_______,離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.18.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.19.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過(guò)濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過(guò)濾器采用并聯(lián)安裝,再與一級(jí)過(guò)濾器串聯(lián)安裝.其中每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn)在使用過(guò)程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶在使用過(guò)程中單獨(dú)購(gòu)買(mǎi)濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級(jí)濾芯更換頻數(shù)分布表一級(jí)濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級(jí)濾芯更換頻數(shù)條形圖以100個(gè)一級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)一級(jí)過(guò)濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)二級(jí)過(guò)濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.20.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來(lái)的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來(lái)的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵(lì)工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級(jí)優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級(jí)一樣,則兩方都不得分,當(dāng)一方總分為4分時(shí),比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時(shí),最終甲獲勝的概率.①寫(xiě)出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)已知橢圓:的兩個(gè)焦點(diǎn)是,,在橢圓上,且,為坐標(biāo)原點(diǎn),直線與直線平行,且與橢圓交于,兩點(diǎn).連接、與軸交于點(diǎn),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長(zhǎng)度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見(jiàn)圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對(duì)本題可以利用長(zhǎng)方體,根據(jù)三視圖刪掉沒(méi)有的點(diǎn)與線,屬中檔題.2、B【解析】

設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值.【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過(guò)垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,,取的三等分點(diǎn)、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點(diǎn),,,,平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題.3、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.4、A【解析】

設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.5、D【解析】

由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實(shí)數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點(diǎn)睛】本題考查了向量的數(shù)量積,考查了向量的坐標(biāo)運(yùn)算.對(duì)于向量問(wèn)題,若已知垂直,通常可得到兩個(gè)向量的數(shù)量積為0,繼而結(jié)合條件進(jìn)行化簡(jiǎn)、整理.6、D【解析】

先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問(wèn)題,涉及到的知識(shí)點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡(jiǎn)單題目.7、D【解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡(jiǎn),可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.8、B【解析】

解對(duì)數(shù)不等式可得集合A,由交集運(yùn)算即可求解.【詳解】集合解得由集合交集運(yùn)算可得,故選:B.【點(diǎn)睛】本題考查了集合交集的簡(jiǎn)單運(yùn)算,對(duì)數(shù)不等式解法,屬于基礎(chǔ)題.9、C【解析】

先寫(xiě)出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過(guò)程,即可求得.【詳解】對(duì)二項(xiàng)式,其通項(xiàng)公式為的展開(kāi)式中的系數(shù)是展開(kāi)式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開(kāi)式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對(duì)通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.10、A【解析】

本道題繪圖發(fā)現(xiàn)三角形周長(zhǎng)最小時(shí)A,P位于同一水平線上,計(jì)算點(diǎn)P的坐標(biāo),計(jì)算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計(jì)算三角形PAF周長(zhǎng)最小值,即計(jì)算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動(dòng)到M點(diǎn)處,三角形周長(zhǎng)最小,故此時(shí)M的坐標(biāo)為,所以斜率為,故選A.【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等.11、C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)椋杂?,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問(wèn)題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.12、C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過(guò)做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點(diǎn)睛】本題主要考查幾何體的外接球問(wèn)題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長(zhǎng)方體外接球半徑是其對(duì)角線的一半.14、【解析】

根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.15、【解析】

確定平面即為平面,四邊形是菱形,計(jì)算面積得到答案.【詳解】如圖,在正方體中,記的中點(diǎn)為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點(diǎn)共面,記的中點(diǎn)為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因?yàn)檎襟w的棱長(zhǎng)為,易知四邊形是菱形,其對(duì)角線,,所以其面積.故答案為:【點(diǎn)睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計(jì)算能力.16、22【解析】

設(shè)雙曲線的右焦點(diǎn)為,根據(jù)周長(zhǎng)為,計(jì)算得到答案.【詳解】設(shè)雙曲線的右焦點(diǎn)為.周長(zhǎng)為:.當(dāng)共線時(shí)等號(hào)成立,故,即實(shí)軸長(zhǎng)為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線周長(zhǎng)的最值問(wèn)題,離心率,實(shí)軸長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)1;(2)證明見(jiàn)解析.【解析】

(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當(dāng)且僅當(dāng)時(shí)取等號(hào)綜上.【點(diǎn)睛】本題主要考查了求絕對(duì)值不等式中參數(shù)的范圍以及基本不等式的應(yīng)用,屬于中檔題.18、(1).(2)答案見(jiàn)解析【解析】

(1)利用絕對(duì)值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點(diǎn)睛】本題考查用絕對(duì)值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時(shí),可通過(guò)執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.19、(1)0.024;(2)分布列見(jiàn)解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,而由一級(jí)濾芯更換頻數(shù)分布表和二級(jí)濾芯更換頻數(shù)條形圖可知,一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級(jí)濾芯更換頻數(shù)條形圖可知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯,兩個(gè)二級(jí)過(guò)濾器均需要更換4個(gè)濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16”為事件,因?yàn)橐粋€(gè)一級(jí)過(guò)濾器需要更換8個(gè)濾芯的概率為0.6,二級(jí)過(guò)濾器需要更換4個(gè)濾芯的概率為0.2,所以.(2)由柱狀圖知,一個(gè)二級(jí)過(guò)濾器需要更換濾芯的個(gè)數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個(gè)).或用分?jǐn)?shù)表示也可以為89101112(個(gè)).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)各級(jí)濾芯所需總費(fèi)用(單位:元)因?yàn)椋遥?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)一級(jí)濾芯和二級(jí)濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)的各級(jí)濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.20、(1);(2)【解析】

(1)當(dāng)時(shí),將原不等式化簡(jiǎn)后兩邊平方,由此解出不等式的解集.(2)對(duì)分成三種情況,利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時(shí),可得,即,化簡(jiǎn)得:,所以不等式的解集為.(2)①當(dāng)時(shí),由函數(shù)單調(diào)性可得,解得;②當(dāng)時(shí),,所以符合題意;③當(dāng)時(shí),由函數(shù)單調(diào)性

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論