版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年學(xué)年第一學(xué)期9+1高中聯(lián)盟期中考試高二年級(jí)數(shù)學(xué)學(xué)科試題一、選擇題(本題共8小題,每小題5分,共40分.小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,不選、多選、錯(cuò)選均不得分)1.設(shè)集合SKIPIF1<0,則SKIPIF1<0等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】先解不等式求出集合SKIPIF1<0,再由補(bǔ)集和交集的概念計(jì)算即可.【詳解】SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,則SKIPIF1<0.故選:D.2.若a,SKIPIF1<0,則“復(fù)數(shù)SKIPIF1<0為純虛數(shù)(SKIPIF1<0是虛數(shù)單位)”是“SKIPIF1<0”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】B【解析】【分析】復(fù)數(shù)SKIPIF1<0為純虛數(shù),即SKIPIF1<0,且SKIPIF1<0,判斷其與SKIPIF1<0的推斷關(guān)系.【詳解】復(fù)數(shù)SKIPIF1<0為純虛數(shù),等價(jià)于SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0可推出SKIPIF1<0,但SKIPIF1<0,不一定得到SKIPIF1<0,且SKIPIF1<0,所以“復(fù)數(shù)SKIPIF1<0為純虛數(shù)”是“SKIPIF1<0”充分不必要條件.故選:B.3.向量SKIPIF1<0,SKIPIF1<0分別是直線SKIPIF1<0,SKIPIF1<0的方向向量,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.12 B.14 C.16 D.18【答案】B【解析】【分析】依題意可得SKIPIF1<0,即可得到存在非零實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,從而求出SKIPIF1<0、SKIPIF1<0的值,求出SKIPIF1<0,最后根據(jù)數(shù)量積的坐標(biāo)表示計(jì)算可得.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0存在非零實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故選:B4.已知定義域?yàn)镽的奇函數(shù)SKIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.0 C.1 D.2【答案】A【解析】【分析】利用函數(shù)的奇偶性和周期性即可求解.【詳解】由題可知SKIPIF1<0即SKIPIF1<0,由奇函數(shù)性質(zhì)可知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是以4為周期的周期函數(shù),則SKIPIF1<0當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故選:A5.若圓錐的表面積為SKIPIF1<0,其側(cè)面展開圖為一個(gè)半圓,則下列結(jié)論正確的為()A.圓錐的母線長(zhǎng)為SKIPIF1<0 B.圓錐的底面半徑為SKIPIF1<0C.圓錐的體積為SKIPIF1<0 D.圓錐的側(cè)面積為SKIPIF1<0【答案】C【解析】【分析】根據(jù)已知條件及圓錐的表面積公式,結(jié)合圓錐的側(cè)面積公式及體積公式即可求解.【詳解】設(shè)圓錐的底面半徑為SKIPIF1<0,母線為SKIPIF1<0,由于其側(cè)面展開圖是一個(gè)半圓,所以SKIPIF1<0,解得SKIPIF1<0,又因?yàn)閳A錐的表面積為SKIPIF1<0,所以表面積SKIPIF1<0,解得SKIPIF1<0,得母線長(zhǎng)SKIPIF1<0,所以圓錐的高SKIPIF1<0,所以側(cè)面積SKIPIF1<0,體積SKIPIF1<0故選:C.6.如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,E,F(xiàn)分別是棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),則EF和AC所成的角等于A.30° B.45° C.60° D.90°【答案】B【解析】【分析】取BC的中點(diǎn)G,連接FG、EG,則SKIPIF1<0為EF與AC所成的角.解SKIPIF1<0.【詳解】如圖所示,取BC的中點(diǎn)G,連接FG,EG.SKIPIF1<0,F(xiàn)分別是CD,AB的中點(diǎn),SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.SKIPIF1<0為EF與AC所成的角.又SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等腰直角三角形,SKIPIF1<0,即EF與AC所成的角為45°.故選:B.【點(diǎn)睛】本題主要考查異面直線所成的角,找角證角求角,主要是通過(guò)平移將空間角轉(zhuǎn)化為平面角,再解三角形,屬于基礎(chǔ)題.7.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】化簡(jiǎn)SKIPIF1<0,利用三角函數(shù)二倍角余弦公式求得SKIPIF1<0,比較大小可得SKIPIF1<0,利用對(duì)數(shù)函數(shù)單調(diào)性可得SKIPIF1<0,和b比較,綜合可得答案.【詳解】由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上:SKIPIF1<0,故選:A.8.在正方體SKIPIF1<0中,點(diǎn)P滿足SKIPIF1<0,且SKIPIF1<0,直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,若二面角SKIPIF1<0的大小為SKIPIF1<0,則SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】由題可得SKIPIF1<0在平面SKIPIF1<0上,根據(jù)正方體的性質(zhì)結(jié)合條件可得SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,進(jìn)而可得SKIPIF1<0在以SKIPIF1<0為圓心,半徑SKIPIF1<0的圓上,且圓在平面SKIPIF1<0內(nèi),作SKIPIF1<0于SKIPIF1<0點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交AD于N點(diǎn),可得SKIPIF1<0為二面角SKIPIF1<0的平面角,設(shè)結(jié)合條件可表示出SKIPIF1<0,再利用二次函數(shù)的性質(zhì)即得.【詳解】SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0在平面SKIPIF1<0上,設(shè)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,同理可得SKIPIF1<0SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,設(shè)正方體的棱長(zhǎng)為1,則可知SKIPIF1<0為棱長(zhǎng)為SKIPIF1<0的正四面體,所以SKIPIF1<0為等邊三角形SKIPIF1<0的中心,由題可得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0,可求得SKIPIF1<0,即SKIPIF1<0在以SKIPIF1<0為圓心,半徑SKIPIF1<0的圓上,且圓在平面SKIPIF1<0內(nèi),由SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,且兩個(gè)平面的交線為AO,把兩個(gè)平面抽象出來(lái),如圖,作SKIPIF1<0于SKIPIF1<0點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交AD于N點(diǎn),連接SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,MN與PM為平面PMN中兩相交直線,故SKIPIF1<0平面PMN,SKIPIF1<0平面PMN,SKIPIF1<0,SKIPIF1<0為二面角SKIPIF1<0的平面角,即為角SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)M與點(diǎn)SKIPIF1<0不重合時(shí),在SKIPIF1<0中,可求得SKIPIF1<0,若M與點(diǎn)SKIPIF1<0重合時(shí),即當(dāng)SKIPIF1<0時(shí),可求得SKIPIF1<0,也符合上式,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,SKIPIF1<0,故SKIPIF1<0的最大值是SKIPIF1<0故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是找出動(dòng)點(diǎn)SKIPIF1<0的位置,根據(jù)空間向量共面定理及線面角可得SKIPIF1<0在以SKIPIF1<0為圓心,半徑SKIPIF1<0的圓上,且圓在平面SKIPIF1<0內(nèi),然后利用面面角的定義作出面面角,轉(zhuǎn)化為函數(shù)問(wèn)題即得.二、選擇題(本題共4小題,每小題5分,共20分.每小題列出的四個(gè)備選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分)9.設(shè)SKIPIF1<0是兩條不同的直線,SKIPIF1<0,SKIPIF1<0是兩個(gè)不同的平面,則下列命題正確的有()A.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】BD【解析】【分析】根據(jù)面面平行的判定定理可判斷A;根據(jù)線面垂直的性質(zhì)B;根據(jù)直線與平面平行的判定定理判斷C,根據(jù)平面的法向量和一向量的數(shù)量積為0,判斷D.【詳解】若SKIPIF1<0,SKIPIF1<0,m,SKIPIF1<0時(shí),根據(jù)面面平行的判定定理應(yīng)該還需要SKIPIF1<0相交于一點(diǎn),才可以得到SKIPIF1<0,故A錯(cuò)誤;根據(jù)線面垂直的性質(zhì)可知,當(dāng)SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,故B正確;若SKIPIF1<0,SKIPIF1<0時(shí),根據(jù)直線與平面平行的判定定理可知,應(yīng)該還需要SKIPIF1<0,才可以得到SKIPIF1<0,故C錯(cuò)誤;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),可在直線n上取SKIPIF1<0,即可作為平面SKIPIF1<0的法向量,在直線m上取SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,故有SKIPIF1<0,故D正確,故選:BD.10.已知SKIPIF1<0,對(duì)于SKIPIF1<0,SKIPIF1<0,下述結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【解析】【分析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合各選項(xiàng)逐一驗(yàn)證即可.【詳解】對(duì)于A,SKIPIF1<0,所以A正確.對(duì)于B,取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以B錯(cuò)誤.對(duì)于C,當(dāng)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0由SKIPIF1<0在R上的單調(diào)性知,SKIPIF1<0,滿足,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),同理滿足,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足,故SKIPIF1<0,所以C正確.對(duì)于D,取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不滿足,所以D錯(cuò)誤.故選:AC.11.已知SKIPIF1<0為雙曲線SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為雙曲線SKIPIF1<0上任意一點(diǎn),則()A.SKIPIF1<0 B.雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0C.雙曲線SKIPIF1<0的離心率為SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】【分析】對(duì)于A,用定義即可判斷,對(duì)于B,根據(jù)焦點(diǎn)位置即可判斷,對(duì)于C,直接計(jì)算即可,對(duì)于D,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,設(shè)SKIPIF1<0可求出SKIPIF1<0的取值范圍,即可判斷【詳解】雙曲線SKIPIF1<0:SKIPIF1<0焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對(duì)于A選項(xiàng),SKIPIF1<0,而SKIPIF1<0點(diǎn)在哪支上并不確定,故A錯(cuò)誤對(duì)于B選項(xiàng),焦點(diǎn)在SKIPIF1<0軸上的雙曲線漸近線方程為SKIPIF1<0,故B錯(cuò)誤對(duì)于C選項(xiàng),SKIPIF1<0,故C正確對(duì)于D選項(xiàng),設(shè)SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0時(shí)取等號(hào))因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,故D正確故選:CD12.在正三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),若點(diǎn)SKIPIF1<0是此三棱錐表面上一動(dòng)點(diǎn),且SKIPIF1<0,記動(dòng)點(diǎn)SKIPIF1<0圍成的平面區(qū)域的面積為SKIPIF1<0,三棱錐SKIPIF1<0的體積為SKIPIF1<0,則()A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】ACD【解析】【分析】依題意可得直線SKIPIF1<0垂直于動(dòng)點(diǎn)SKIPIF1<0圍成的平面區(qū)域所在的平面,當(dāng)SKIPIF1<0時(shí)取SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的中點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,即可得到動(dòng)點(diǎn)SKIPIF1<0圍成的平面區(qū)域?yàn)槿鐖D所示的矩形SKIPIF1<0,求出錐體的體積與矩形SKIPIF1<0的面積即可判斷A、C,同理求出SKIPIF1<0時(shí)的情況,即可判斷.【詳解】解:由題意知,直線SKIPIF1<0垂直于動(dòng)點(diǎn)SKIPIF1<0圍成的平面區(qū)域所在的平面,當(dāng)SKIPIF1<0時(shí),正三棱錐SKIPIF1<0的底面SKIPIF1<0是邊長(zhǎng)為2的正三角形,側(cè)面SKIPIF1<0、SKIPIF1<0、SKIPIF1<0都是以SKIPIF1<0為直角頂點(diǎn)的等腰直角三角形,所以SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,取SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的中點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又三角形SKIPIF1<0為等腰直角三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,則此時(shí)正三棱錐SKIPIF1<0的體積SKIPIF1<0,由題意可知,動(dòng)點(diǎn)SKIPIF1<0圍成的平面區(qū)域?yàn)槿鐖D所示的矩形SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則該矩形的面積為SKIPIF1<0,故A、C均正確;當(dāng)SKIPIF1<0時(shí),正三棱錐SKIPIF1<0即為棱長(zhǎng)為2的正四面體,各個(gè)面都是邊長(zhǎng)為SKIPIF1<0的正三角形,則此時(shí)正三棱錐SKIPIF1<0的體積SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,設(shè)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,由題意可知,動(dòng)點(diǎn)SKIPIF1<0圍成的平面區(qū)域?yàn)槿鐖D所示的三角形SKIPIF1<0,顯然SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤、D正確.故選:ACD三、填空題(本題共4小題,每小題5分,共20分)13.將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個(gè)單位長(zhǎng)度后的圖象過(guò)原點(diǎn),則m的最小值是__________.【答案】SKIPIF1<0【解析】【分析】利用函數(shù)的平移變換及點(diǎn)在函數(shù)的圖象上,結(jié)合三角方程即可求解.【詳解】由題意可知,平移后函數(shù)解析式為SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的圖象過(guò)原點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0時(shí),m取最小值SKIPIF1<0故答案為:SKIPIF1<0.14.若點(diǎn)SKIPIF1<0在冪函數(shù)SKIPIF1<0圖象上,則SKIPIF1<0的值為__________.【答案】4【解析】【分析】由冪函數(shù)的概念求出a,c,再將點(diǎn)SKIPIF1<0代入函數(shù)解析式,求得b的值.【詳解】因?yàn)镾KIPIF1<0為冪函數(shù),則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0故答案為:4.15.已知四面體ABCD中,SKIPIF1<0,SKIPIF1<0平面ACD,SKIPIF1<0平面ABD,則四面體ABCD外接球的半徑是__________【答案】1【解析】【分析】根據(jù)給定幾何體,取棱BC的中點(diǎn)O,再確定四面體外接球球心即可計(jì)算作答.【詳解】在四面體ABCD中,因SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,取棱BC的中點(diǎn)O,連AO,如圖,則SKIPIF1<0,又SKIPIF1<0平面ABD,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,連OD,有SKIPIF1<0,因此SKIPIF1<0,所以四面體ABCD外接球球心為O,半徑為1.故答案為:116.已知SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左右焦點(diǎn),P是橢圓C上一點(diǎn),若線段SKIPIF1<0上有且只有中點(diǎn)Q滿足SKIPIF1<0其中O是坐標(biāo)原點(diǎn)SKIPIF1<0,則橢圓C的離心率是__________.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】判斷點(diǎn)P為長(zhǎng)軸端點(diǎn)的情況,點(diǎn)P不為長(zhǎng)軸端點(diǎn),由橢圓定義結(jié)合余弦定理、一元二次方程計(jì)算作答.【詳解】令橢圓SKIPIF1<0半焦距為c,有SKIPIF1<0,顯然點(diǎn)P不可能是橢圓長(zhǎng)軸左端點(diǎn),當(dāng)點(diǎn)P為橢圓長(zhǎng)軸的右端點(diǎn)時(shí),即SKIPIF1<0,取SKIPIF1<0,顯然點(diǎn)Q在線段SKIPIF1<0上,并滿足SKIPIF1<0,而點(diǎn)Q不一定是線段SKIPIF1<0的中點(diǎn),因此點(diǎn)P不是橢圓長(zhǎng)軸的端點(diǎn).在SKIPIF1<0中,不妨設(shè)SKIPIF1<0,當(dāng)Q為中點(diǎn)時(shí),而O是SKIPIF1<0的中點(diǎn),則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由余弦定理得,SKIPIF1<0,線段SKIPIF1<0上的點(diǎn)Q滿足SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,顯然SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因線段SKIPIF1<0上有且只有中點(diǎn)Q滿足,于是得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以橢圓C的離心率SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:求橢圓的離心率問(wèn)題,可以求出a,c,代入離心率公式即得;或者根據(jù)條件得到關(guān)于a,b,c的齊次式,利用方程或不等式求解.四、解答題(本題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟)17.已知圓C的圓心在x軸上,且經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過(guò)點(diǎn)SKIPIF1<0的直線l與圓C相交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,求直線l的方程.【答案】(1)SKIPIF1<0.(2)SKIPIF1<0或SKIPIF1<0.【解析】【分析】(1)求出直線SKIPIF1<0的中垂線方程,結(jié)合圓心在x軸上,求得圓心和半徑,即可求得圓的方程;(2)利用圓的幾何性質(zhì)求得圓心到所求直線的距離,討論直線斜率是否存在,存在時(shí),設(shè)出直線方程,利用點(diǎn)到直線的距離可求得斜率,即得答案.【小問(wèn)1詳解】設(shè)圓C的標(biāo)準(zhǔn)方程為SKIPIF1<0,其中SKIPIF1<0,半徑為SKIPIF1<0,記線段AB中點(diǎn)為D,則SKIPIF1<0,又直線AB的斜率為SKIPIF1<0,故線段AB中垂線CD方程為SKIPIF1<0,即SKIPIF1<0,由圓的性質(zhì),圓心SKIPIF1<0在直線CD上,得SKIPIF1<0,所以圓心SKIPIF1<0,SKIPIF1<0,所以圓C標(biāo)準(zhǔn)方程為SKIPIF1<0;【小問(wèn)2詳解】因?yàn)橹本€l與圓C相交的弦長(zhǎng)SKIPIF1<0,圓心SKIPIF1<0到直線l的距離SKIPIF1<0,當(dāng)直線l的斜率不存在時(shí),l的方程SKIPIF1<0,此時(shí)SKIPIF1<0,不符合題意,舍去.當(dāng)直線l的斜率存在時(shí),設(shè)斜率為k,則l的方程SKIPIF1<0,即SKIPIF1<0,由題意得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故直線l的方程為SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,綜上直線l的方程為SKIPIF1<0或SKIPIF1<018.已知函數(shù)SKIPIF1<0(1)求函數(shù)SKIPIF1<0的值域;(2)若對(duì)任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)換元轉(zhuǎn)化為求二次函數(shù)值域;(2)換元,分離參變量,根據(jù)不等式求解恒成立問(wèn)題.【小問(wèn)1詳解】因?yàn)镾KIPIF1<0定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0值域?yàn)镾KIPIF1<0.【小問(wèn)2詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,原問(wèn)題化為對(duì)任意SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),取等號(hào)SKIPIF1<0,即SKIPIF1<0的最小值為3,所以SKIPIF1<019.某校對(duì)2022學(xué)年高二年級(jí)上學(xué)期期中數(shù)學(xué)考試成績(jī)SKIPIF1<0單位:分SKIPIF1<0進(jìn)行分析,隨機(jī)抽取100名學(xué)生,將分?jǐn)?shù)按照SKIPIF1<0分成6組,制成了如圖所示的頻率分布直方圖:(1)估計(jì)該校高二年級(jí)上學(xué)期期中數(shù)學(xué)考試成績(jī)的第80百分位數(shù);(2)為了進(jìn)一步了解學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的情況,由頻率分布直方圖,成績(jī)?cè)赟KIPIF1<0和SKIPIF1<0的兩組中,用按比例分配的分層隨機(jī)抽樣的方法抽取5名學(xué)生,再?gòu)倪@5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行問(wèn)卷調(diào)查,求抽取的這2名學(xué)生至少有1人成績(jī)?cè)赟KIPIF1<0內(nèi)的概率.【答案】(1)115;(2)SKIPIF1<0.【解析】【分析】(1)根據(jù)百分位數(shù)的概念結(jié)合頻率分布直方圖求解即可;(2)由分層抽樣可知,SKIPIF1<0內(nèi)抽取2人,SKIPIF1<0內(nèi)抽取3人,分別列出所有基本樣本點(diǎn),利用古典概型求解即可.【小問(wèn)1詳解】由SKIPIF1<0,可得SKIPIF1<0樣本數(shù)據(jù)中數(shù)學(xué)考試成績(jī)?cè)?10分以下所占比例為SKIPIF1<0,在130分以下所占比例為SKIPIF1<0,因此,第80百分位數(shù)一定位于SKIPIF1<0內(nèi),由SKIPIF1<0,所以樣本數(shù)據(jù)的第80百分位數(shù)約為SKIPIF1<0【小問(wèn)2詳解】由題意可知,SKIPIF1<0分?jǐn)?shù)段的人數(shù)為SKIPIF1<0人SKIPIF1<0,SKIPIF1<0分?jǐn)?shù)段的人數(shù)為SKIPIF1<0人SKIPIF1<0用按比例分配的分層隨機(jī)抽樣的方法抽取5名學(xué)生,則需在SKIPIF1<0內(nèi)抽取2人,分別記為a,b,SKIPIF1<0內(nèi)抽取3人,分別記為x,y,z,設(shè)“從樣本中抽取2人,至少有1人分?jǐn)?shù)在SKIPIF1<0內(nèi)”為事件A,則樣本空間為SKIPIF1<0,共包含10個(gè)樣本點(diǎn),而事件SKIPIF1<0,包含7個(gè)樣本點(diǎn),所以SKIPIF1<0,即抽取的這2名學(xué)生至少有1人成績(jī)?cè)赟KIPIF1<0內(nèi)的概率為SKIPIF1<0.20.已知四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(1)求證:SKIPIF1<0(2)求直線PC與平面PBD所成角的正弦值.【答案】(1)證明見解析(2)SKIPIF1<0【解析】【分析】(1)根據(jù)線面平行的判定定理證明線面垂直,從而得到線線垂直;(2)利用幾何法找到線面所成角進(jìn)而求解或者利用空間向量求解.【小問(wèn)1詳解】在梯形ABCD中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可算得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0平面PBD,SKIPIF1<0平面PBD,且SKIPIF1<0,所以SKIPIF1<0平面PBD,又因?yàn)镾KIPIF1<0平面PBD,所以SKIPIF1<0;【小問(wèn)2詳解】由SKIPIF1<0證明可知,SKIPIF1<0平面PBD,因?yàn)镾KIPIF1<0平面ABCD,則平面SKIPIF1<0平面ABCD,取BD中點(diǎn)O,連OP,OC,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0平面ABCD,且平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面PBD,所以SKIPIF1<0就是PC與平面PBD所成的角,在SKIPIF1<0中,易得SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,計(jì)算可得SKIPIF1<0,所以SKIPIF1<0,所以求直線PC與平面PBD所成角的正弦值為SKIPIF1<0解法SKIPIF1<0由SKIPIF1<0證明可知,SKIPIF1<0平面PBD,因?yàn)镾KIPIF1<0平面ABCD,則平面SKIPIF1<0平面ABCD,通過(guò)計(jì)算可得SKIPIF1<0,建立以SKIPIF1<0,SKIPIF1<0為x軸,y軸的正方向,以過(guò)D與平面ABCD垂直的向量為在z軸的正方向建立如圖空間直角坐標(biāo)系,顯然z軸再平面PBD中且垂直于BD,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面PBD的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0取SKIPIF1<0,設(shè)直線PC與平面PBD所成角為SKIPIF1<0,則SKIPIF1<0,所以求直線PC與平面PBD所成角的正弦值為SKIPIF1<021.在①SKIPIF1<0,②SKIPIF1<0這兩個(gè)條件中任選一個(gè),補(bǔ)充在下面的橫線上,并加以解答.已知SKIPIF1<0的內(nèi)角SKIPIF1<0的所對(duì)的邊分別為SKIPIF1<0,__________.(1)若SKIPIF1<0,求SKIPIF1<0(2)求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】【分析】(1)選①,由正弦定理邊化角,結(jié)合SKIPIF1<0,可推出SKIPIF1<0,求得答案;選②,當(dāng)SKIPIF1<0時(shí),代入已知得,SKIPIF1<0,利用兩角和差正弦公式,即可求得答案;(2)選①,由正弦定理邊化角可推出SKIPIF1<0,可得SKIPIF1<0,繼而SKIPIF1<0,利用二倍角公式化簡(jiǎn)得SKIPIF1<0,采用換元令SKIPIF1<0,化簡(jiǎn)為SKIPIF1<0,求得答案;選②,利用三角恒等變換和角公式以及二倍角公式化簡(jiǎn)SKIPIF1<0,可得到SKIPIF1<0,以下同選①解答.小問(wèn)1詳解】SKIPIF1<0若選①,由正弦定理可得,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),代入得,SKIPIF1<0,整理可得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又C為三角形內(nèi)角,所以SKIPIF1<0,所以SKIPIF1<0若選②,當(dāng)SKIPIF1<0時(shí),代入得,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【小問(wèn)2詳解】若選①,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,由SKIPIF1<0,及SKIPIF1<0在SKIPIF1<0上遞減,可得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆明城市學(xué)院《模擬電路設(shè)計(jì)含實(shí)驗(yàn)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇聯(lián)合職業(yè)技術(shù)學(xué)院《小學(xué)數(shù)學(xué)教學(xué)設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林工程技術(shù)師范學(xué)院《海洋油氣工程綜合課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院《人工智能原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】《滑輪》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教版(2024)初中物理八年級(jí)下冊(cè)
- 重慶文理學(xué)院《西方文論專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州財(cái)稅金融職業(yè)學(xué)院《數(shù)字出版物創(chuàng)作實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院《MySQL數(shù)據(jù)庫(kù)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 董事會(huì)議事規(guī)則
- 浙江安防職業(yè)技術(shù)學(xué)院《嬰幼兒語(yǔ)言發(fā)展與教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 《國(guó)有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護(hù)管理方案
- 食品安全分享
- 礦山機(jī)械設(shè)備安全管理制度
- 計(jì)算機(jī)等級(jí)考試二級(jí)WPS Office高級(jí)應(yīng)用與設(shè)計(jì)試題及答案指導(dǎo)(2025年)
- 造價(jià)框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 《創(chuàng)傷失血性休克中國(guó)急診專家共識(shí)(2023)》解讀課件
- 小學(xué)六年級(jí)數(shù)學(xué)100道題解分?jǐn)?shù)方程
- YY 0838-2021 微波熱凝設(shè)備
- 病原細(xì)菌的分離培養(yǎng)
評(píng)論
0/150
提交評(píng)論