遼寧省沈陽市重點高中聯(lián)合體2024屆高二上數(shù)學期末檢測模擬試題含解析_第1頁
遼寧省沈陽市重點高中聯(lián)合體2024屆高二上數(shù)學期末檢測模擬試題含解析_第2頁
遼寧省沈陽市重點高中聯(lián)合體2024屆高二上數(shù)學期末檢測模擬試題含解析_第3頁
遼寧省沈陽市重點高中聯(lián)合體2024屆高二上數(shù)學期末檢測模擬試題含解析_第4頁
遼寧省沈陽市重點高中聯(lián)合體2024屆高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

遼寧省沈陽市重點高中聯(lián)合體2024屆高二上數(shù)學期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,,在()A.25 B.30C.32 D.642.某班進行了一次數(shù)學測試,全班學生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若該班學生這次數(shù)學測試成績的中位數(shù)的估計值為,則的值為()A. B.C. D.3.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.4.命題:,的否定為()A., B.不存在,C., D.,5.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.6.已知等差數(shù)列為其前項和,且,且,則()A.36 B.117C. D.137.在空間直角坐標系中,已知點A(1,1,2),B(-3,1,-2),則線段AB的中點坐標是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)8.圓的圓心坐標和半徑分別為()A.和 B.和C.和 D.和9.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.10.從1,2,3,4,5中隨機抽取三個數(shù),則這三個數(shù)能成為一個三角形三邊長的概率為()A. B.C. D.11.拋物線的焦點到準線的距離為()A. B.C. D.12.已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點,為拋物線:上不同于原點的兩點,且,則的面積的最小值為__________.14.已知命題,則命題的的否定是___________.15.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________16.在空間直角坐標系中,已知向量,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線與直線交于點.(1)求過點且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點并且在兩坐標軸上的截距互為相反數(shù)的直線的方程.18.(12分)已知數(shù)列{an}的首項a1=1,且an+1=(n∈N*).(1)證明:數(shù)列是等比數(shù)列;(2)設bn=-,求數(shù)列{bn}的前n項和Sn.19.(12分)已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值20.(12分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍.21.(12分)已知以點為圓心的圓與直線相切,過點的動直線l與圓A相交于M,N兩點(1)求圓A的方程(2)當時,求直線l方程22.(10分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設首項為2的數(shù)列的前n項和為,前n項積為,且(1)求數(shù)列的通項公式;(2)求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題中條件,得出數(shù)列公差,進而可求出結果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點睛】本題主要考查等差數(shù)列的基本量運算,屬于基礎題型.2、A【解析】根據(jù)已知條件可得出關于、的方程組,解出這兩個量的值,即可求得結果.【詳解】由題意有,得,又由,得,解得,,有故選:A.3、D【解析】根據(jù)點到直線的距離與點到點之間距離的關系化簡即可.【詳解】定圓的圓心,半徑為2,設動圓圓心P點坐標為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D4、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結論即可【詳解】解:命題:,的否定為:,故選:D5、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負【詳解】∵,∴和異號,又數(shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關鍵點睛:本題求滿足的最大正整數(shù)的值,關鍵就是求出,時成立的的值,解題時應充分利用等差數(shù)列下標和的性質(zhì)求解,屬于中檔題.6、B【解析】根據(jù)等差數(shù)列下標的性質(zhì),,進而根據(jù)條件求出,然后結合等差數(shù)列的求和公式和下標性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.7、B【解析】利用中點坐標公式直接求解【詳解】在空間直角坐標系中,點,1,,,1,,則線段的中點坐標是,,,1,故選:B.8、C【解析】利用圓的一般方程的圓心和半徑公式,即得解【詳解】可化為,由圓心為,半徑,易知圓心的坐標為,半徑為.故選:C9、D【解析】根據(jù)圓的切線性質(zhì),結合圓的標準方程、圓與圓的位置關系進行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設,點,因此的中點的橫坐標為:,縱坐標為:,,因此以為直徑的圓的標準方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關鍵點睛:由圓的切線性質(zhì)得到點、在以為直徑的圓上,運用圓與圓的位置關系進行求解是解題的關鍵.10、C【解析】列舉出所有情況,然后根據(jù)兩邊之和大于第三邊數(shù)出能構成三角形的情況,進而得到答案.【詳解】5個數(shù)取3個數(shù)的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.11、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.12、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡得到,化簡得到,再結合基本不等式,即可求解.【詳解】由題意,向量,,因為,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因為,所以,由,所以,因為是銳角三角形,且,可得,解得,所以,所以,當且僅當,即時等號成立,故的最小值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,,利用可得即可求得,利用兩點間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設,,由可得,解得:,,,,,所以,當且僅當時等號成立,所以的面積的最小值為,故答案為:.【點睛】關鍵點點睛:本題解題的關鍵點是設,坐標,采用設而不求的方法,將轉化為,求出參數(shù)之間的關系,再利用基本不等式求的最值.14、【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題是存在量詞命題,所以其否定是全稱量詞命題即,故答案為:15、【解析】根據(jù)雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:16、【解析】由題知,進而根據(jù)向量數(shù)量積運算的坐標表示求解即可.【詳解】解:因為向量,所以,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);.(2)或.【解析】(1)首先求得交點坐標,然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計算距離;(2)根據(jù)截距式方程的求法解答【小問1詳解】由得設直線的方程為,代入點坐標得,∴直線的方程為∴兩平行線間的距離【小問2詳解】當直線過坐標原點時,直線的方程為,即;當直線不過坐標原點時,設直線的方程為,代入點坐標得,∴直線的方程的方程為,即綜上所述,直線的方程為或18、(1)證明見解析.(2)2-.【解析】(1)根據(jù)遞推公式,得到,推出,即可證明數(shù)列是等比數(shù)列;(2)先由(1)求出,即bn=,再錯位相減法,即可求出數(shù)列的和.【小問1詳解】(1)證明:因為an+1=,所以==+,所以-=-=,又a1-≠0,所以數(shù)列為以-=為首項,為公比的等比數(shù)列.【小問2詳解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.19、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值420、(1)答案見解析(2)【解析】(1)求函數(shù)的定義域及導函數(shù),根據(jù)導數(shù)與函數(shù)的單調(diào)性關系判斷函數(shù)的單調(diào)性;(2)結合已知條件,根據(jù)函數(shù)的單調(diào)性,極值結合零點存在性定理列不等式求實數(shù)的取值范圍.【小問1詳解】的定義域為,當時,恒成立,上單調(diào)遞增,當時,在遞減,在遞增【小問2詳解】當時,恒成立,上單調(diào)遞增,所以至多存一個零點,不符題意,故舍去.當時,在遞減,在遞增;所以有極小值為構造函數(shù),恒成立,所以在單調(diào)遞減,注意到①當時,,則函數(shù)至多只有一個零點,不符題意,舍去.②當時,函數(shù)圖象連續(xù)不間斷,的極小值為,又函數(shù)在單調(diào)遞減,所以在上存在唯一一個零點;,令,構造函數(shù),恒成立.在單調(diào)遞增,所以,即,所以函數(shù)在單調(diào)遞增,所以在上存在唯一一個零點;當時,函數(shù)怡有兩個零點,即在上各有一個零點.綜上,函數(shù)有兩個不同的零點,實數(shù)的取值范圍為.【點睛】函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點.21、(1);(2)或.【解析】(1)利用圓心到直線的距離公式求圓的半徑,從而求解圓的方程;(2)根據(jù)相交弦長公式,求出圓心到直線的距離,設出直線方程,再根據(jù)點到直線的距離公式確定直線方程【詳解】(1)由題意知到直線的距離為圓A半徑r,所以,所以圓A的方程為(2)設的中點為Q,則由垂徑定理可知,且,在中由勾股定理易知,設動直線l方程為:或,顯然符合題意由到直線l距離為1知得所以或為所求直線方程【點睛】本題考查圓的標準方程及直線與圓的相交弦長問題,考查學生分析解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論