![重慶市萬州第二高級名校2023-2024學年高一上學期10月月考數(shù)學試題(解析版)_第1頁](http://file4.renrendoc.com/view/4f86b200413334349b55a4ac8ad3d6a8/4f86b200413334349b55a4ac8ad3d6a81.gif)
![重慶市萬州第二高級名校2023-2024學年高一上學期10月月考數(shù)學試題(解析版)_第2頁](http://file4.renrendoc.com/view/4f86b200413334349b55a4ac8ad3d6a8/4f86b200413334349b55a4ac8ad3d6a82.gif)
![重慶市萬州第二高級名校2023-2024學年高一上學期10月月考數(shù)學試題(解析版)_第3頁](http://file4.renrendoc.com/view/4f86b200413334349b55a4ac8ad3d6a8/4f86b200413334349b55a4ac8ad3d6a83.gif)
![重慶市萬州第二高級名校2023-2024學年高一上學期10月月考數(shù)學試題(解析版)_第4頁](http://file4.renrendoc.com/view/4f86b200413334349b55a4ac8ad3d6a8/4f86b200413334349b55a4ac8ad3d6a84.gif)
![重慶市萬州第二高級名校2023-2024學年高一上學期10月月考數(shù)學試題(解析版)_第5頁](http://file4.renrendoc.com/view/4f86b200413334349b55a4ac8ad3d6a8/4f86b200413334349b55a4ac8ad3d6a85.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第第頁重慶市萬州第二高級名校2023-2024學年高一上學期10月月考數(shù)學試題(解析版)萬州二中教育集團高2023級高一上期10月聯(lián)考
數(shù)學試題
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.下列說法正確的是
A.我校愛好足球的同學組成一個集合
B.是不大于3的自然數(shù)組成的集合
C.集合和表示同一集合
D.數(shù)1,0,5,,,,組成的集合有7個元素
【答案】C
【解析】
【分析】根據(jù)集合的含義逐一分析判斷即可得到答案
【詳解】選項A,不滿足確定性,故錯誤
選項B,不大于3的自然數(shù)組成的集合是,故錯誤
選項C,滿足集合的互異性,無序性和確定性,故正確
選項D,數(shù)1,0,5,,,,組成的集合有5個元素,故錯誤
故選C
【點睛】本題考查了集合的含義,利用其確定性、無序性、互異性進行判斷,屬于基礎(chǔ)題.
2.若全集且,則集合的真子集共有()
A.個B.個C.個D.個
【答案】C
【解析】
【分析】先利用補集求得集合A,進而得到真子集的個數(shù).
【詳解】解:因為全集且,
所以,
所以集合的真子集共有,
故選:C
3.“兩個三角形相似”是“兩個三角形三邊成比例”的()
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
【答案】C
【解析】
【分析】根據(jù)相似三角形的性質(zhì),結(jié)合充分條件、必要條件的判定方法,即可求解.
【詳解】根據(jù)相似三角形的性質(zhì)得,由“兩個三角形相似”可得到“兩個三角形三邊成比例”,即充分性成立;
反之:由“兩個三角形三邊成比例”可得到“兩個三角形相似”,即必要性成立,
所以“兩個三角形相似”是“兩個三角形三邊成比例”的充分必要條件.
故選:C.
4.下列四個命題為真命題的是()
A.若,則B.若,則
C.若,則D.若,則
【答案】B
【解析】
【分析】利用特殊值排除錯誤選項,然后證明正確的選項.
【詳解】取,則,故A選項錯誤.
取,則,故C選項錯誤.
取,則由解得,故D選項錯誤.
對于B選項,由得,故B選項正確.
故選:B
【點睛】本小題主要考查不等式的性質(zhì),考查差比較法比較大小,屬于基礎(chǔ)題.
5.設(shè)全集,集合,,則下列運算關(guān)系正確的是().
A.B.
C.D.
【答案】C
【解析】
【分析】分別求解出集合中表示元素的范圍,則集合可知,然后對選項逐個判斷即可,注意每個集合中的表示元素是哪一個.
【詳解】因為中,所以,所以;
因為中,所以,所以;
A.,錯誤;
B.因為,所以,錯誤;
C.,正確;
D.因為,所以,錯誤;
故選C.
【點睛】本題考查集合的交并補混合運算對錯的判斷,難度一般.用描述法表示的集合一定要注意其表示元素是哪一個.
6.若命題“,使得成立”為假命題,則實數(shù)a的取值范圍是()
A.[1,+∞)B.[0,+∞)C.(,1)D.(,0]
【答案】A
【解析】
【分析】根據(jù)命題和它的否定命題一真一假,寫出它的否定命題,再根據(jù)否定命題為真命題即可求出的取值范圍.
【詳解】命題“,使得成立”為假命題,則它的否定命題:
“,”為真命題
所以
解得,所以實數(shù)a的取值范圍是
故選:A.
7.設(shè),若不等式的解集是,則不等式的解集為()
A.B.
C.D.
【答案】D
【解析】
【分析】由題知,且,再解不等式即可.
【詳解】解:因為不等式的解集是,
所以,,2是方程的兩個根,且,
所以,由韋達定理,即,且,
所以,不等式化為,解得,
所以,不等式的解集為.
故選:D
8.若對任意實數(shù),不等式恒成立,則實數(shù)a的最小值為()
A.B.C.D.
【答案】D
【解析】
【分析】分離變量將問題轉(zhuǎn)化為對于任意實數(shù)恒成立,進而求出的最大值,設(shè)及,然后通過基本不等式求得答案.
【詳解】由題意可得,對于任意實數(shù)恒成立,則只需求的最大值即可,,設(shè),則,再設(shè),則,當且僅當時取得“=”.
所以,即實數(shù)a的最小值為.
故選:D.
二、多選題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.
9.下列關(guān)于符號“”使用正確的有()
A.B.
C.D.
【答案】BC
【解析】
【分析】根據(jù)元素與集合、集合與集合的關(guān)系判斷即可.
【詳解】對于A:,故A錯誤;
對于B:,,所以,故B正確;
對于C:,故C正確;
對于D:或,故D錯誤;
故選:BC
10.下列命題為真命題的是()
A.,
B.設(shè)全集為,若,則
C.“”是“”的必要不充分條件
D.“和都是無理數(shù)”是“是無理數(shù)”的必要不充分條件
【答案】ABC
【解析】
【分析】對A,舉例判斷即可;對B,由補集的概念即可判斷;對C,分別判斷必要性與充分性;對D,分別判斷必要性與充分性.
【詳解】對A,當時,成立,A正確;
對B,全集為,,如圖所示,
由補集的定義可知,成立,故B正確;
對C,“”可得“”成立,“”不能推倒得“”成立,
所以“”是“”的必要不充分條件,C正確;
對D,當時,不是無理數(shù),不滿足充分性,
當時,,不都是無理數(shù),不滿足必要性,D錯誤.
故選:ABC
11.已知關(guān)于x的不等式的解集為,則()
A.為定值
B.的最小值為
C.最大值為
D.無最小值
【答案】ABD
【解析】
【分析】根據(jù)一元二次不等式的解可得,進而代入選項中,結(jié)合基本不等式以及二次函數(shù)的單調(diào)性即可求解.
【詳解】由于的解集為,所以,
因此,故A正確,
,由于,所以,當且僅當時,等號成立,故B正確,
,由于,所以,當且僅當時,等號成立,故C錯誤,
在單調(diào)遞增,由于,故無最小值,故D正確,
故選:ABD
12.已知,且,則下列結(jié)論正確的是()
A.的最大值為B.的最大值為
C.的最小值為D.
【答案】BCD
【解析】
【分析】利用基本不等式求最值判斷ABC,利用二次函數(shù)性質(zhì)求得的取值范圍判斷D.
詳解】,且,,,
對于A,利用基本不等式得,化簡得,
當且僅當,即,時,等號成立,所以的最大值為,故A錯誤;
對于B,,
當且僅當,即,時,等號成立,所以的最大值為,故B正確;
對于C,,當且僅當,即時,等號成立,所以的最小值為,故C正確;
對于D,
利用二次函數(shù)的性質(zhì)知,當時,函數(shù)單調(diào)遞減;當時,函數(shù)單調(diào)遞增,
,
,故D正確;
故選:BCD.
三、填空題:本題共4小題,每小題5分,共20分.
13.命題“,”的否定是___________.
【答案】
【解析】
【分析】利用含有一個量詞的命題的否定的定義求解.
【詳解】因為命題“,”是全稱量詞命題,
所以其否定是存在量詞命題,即為,
故答案為:
14.含有三個實數(shù)的集合既可表示成,又可表示成,則____.
【答案】
【解析】
【分析】根據(jù)兩個集合相等的關(guān)系,求得a,b的值,再求a2023+b2023的值.
【詳解】解:由題意,0∈{a,,1}及a≠0,
可得=0,即b=0,
從而{a,0,1}={a,a2,0},
進而有a2=1,即a=﹣1或1(舍去)(集合元素的互異性),
故a2023+b2023=﹣1,故答案為﹣1.
【考點】集合相等和集合元素的互異性.
【點睛】集合相等要分類討論,以及利用元素的互異性進行取舍是解決本題的關(guān)鍵.
15.已知關(guān)于的不等式,關(guān)于此不等式的解集有下列結(jié)論,其中正確的有__________.
①不等式的解集可以是
②不等式的解集可以是
③不等式的解集可以是
④不等式的解集可以是
【答案】②④
【解析】
【分析】在假設(shè)結(jié)論成立時求出值進行判斷①④,舉特例判斷②③.
【詳解】①:假設(shè)結(jié)論成立,則,解得,則不等式為,
解得,與解集是矛盾,故錯誤;
②:當,時,不等式恒成立,則解集是,故正確;
③:當時,不等式,則解集不可能為,故錯誤;
④:假設(shè)結(jié)論成立,則,解得,符合題意,故正確;
故答案為:②④
16.若正實數(shù)滿足,且不等式有解,則實數(shù)的取值范圍__________.
【答案】或##
【解析】
【分析】要使有解,則大于最小值即可;求出最小值,建立不等式,求出的取值范圍.
【詳解】因為,所以,所以,當時,等號成立,因為,所以此時,所以的最小值為,由題可得,解得或.
故填:或
四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.
17.(Ⅰ)解不等式;
(Ⅱ)解不等式.
【答案】(Ⅰ)或;(Ⅱ).
【解析】
【分析】
(Ⅰ)根據(jù)一元二次不等式的解法,直接求解,即可得出結(jié)果;
(Ⅱ)先移項通分,進而可求出結(jié)果.
【詳解】(Ⅰ)由得,即,
解得或,
所以不等式的解集為或;
(Ⅱ)由得,即,即,
解得,即不等式的解集為;
18已知集合,,.
(1)求;
(2)若,求m的取值范圍.
【答案】(1)
(2)
【解析】
【分析】(1)先求出集合A,由交集和并集的定義即可得出答案;
(2)由可得,討論和,求解即可.
【小問1詳解】
,
所以.
【小問2詳解】
因為,所以,
若,則,解得:,
若,則,解得:,
所以m的取值范圍為:.
19.(1)已知,,求的取值范圍;
(2)已知a,b是正常數(shù),且,,求證:,指出等號成立的條件;
【答案】(1);(2)證明見解析,時等號成立
【解析】
【分析】(1)把用和表示后由不等式的性質(zhì)得結(jié)論;
(2)作差變形后與0比較,或利用基本不等式證明.
【詳解】(1)設(shè),其中,
則,解得,即,
因為,則,,
可得,
所以的取值范圍為;
(2)解法一:
,
,當且僅當,即時等號成立.
解法二:,
,
故,當且僅當,即時等號成立.
20.已知集合,集合.
(1)當時,求;
(2)命題:,命題:,若是的充分條件,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
【分析】(1)把代入化簡,求解一元二次不等式化簡,再由交集運算得答案;
(2)由是的充分條件,得.然后對分類求解,再由兩集合端點值間的關(guān)系列不等式組求解.
【詳解】解:(1)當時,,
.
;
(2),,若是的充分條件,
則.
因為
當時,,顯然成立;
當時,,,
,解得;
當時,,,
,解得.
實數(shù)的取值范圍是.
【點睛】本題考查交集及其運算,考查充分必要條件的判定及其應用,考查數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.
21.某學校要建造一個長方體形的體育館,其地面面積為,體育館高,如果甲工程隊報價為:館頂每平方米的造價為100元,體育館前后兩側(cè)墻壁平均造價為每平方米150元,左右兩側(cè)墻壁平均造價為每平方米250元,設(shè)體育館前墻長為米.
(1)當前墻的長度為多少時,甲工程隊報價最低?
(2)現(xiàn)有乙工程隊也參與該校的體育館建造競標,其給出的整體報價為元,若無論前墻的長度為多少米,乙工程隊都能競標成功,試求的取值范圍.
【答案】(1)當前墻的長度為20米時,甲工程隊報價最低為84000元
(2)當時,無論前墻的長度為多少米,乙工程隊都能競標成功
【解析】
【分析】(1)根據(jù)題意求出報價的表達式,再根據(jù)基本不等式即可得解;
(2)根據(jù)題意可知對任意的恒成立,分離參數(shù)可得對任意的恒成立,分類常數(shù)結(jié)合基本不等式求出的最小值,即可得解.
【小問1詳解】
因為體育館前墻長為米,地面面積為,
所以體育館的左右兩側(cè)墻的長度均為米,
設(shè)甲工程隊報價為元,
所以,
因,
當且僅當,即時等號成立,
所以當前墻的長度為20米時,甲工程隊報價最低為84000元;
【小問2詳解】
根據(jù)題意可知對任意的恒成立,
即對任意的恒成立,
所以對任意的恒成立,
因為,
,
當且僅當,即時等號成立,
所以,
故當時,無論前墻的長度為多少米,乙工程隊都能競標成功.
22.設(shè)集合,集合,如果對于任意元素,都有或,則稱集合為的自鄰集.記為集合的所有自鄰集中最大元素為的集合的個數(shù).
(1)直接判斷集合和是否為的自鄰集;
(2)比較和的大小,并說明理由;
(3)當時,求證:.
【答案】(1)不是的自鄰集,是的自鄰集;(2),理由見解析;(3)證明見解析
【解析】
【分析】(1)利用自鄰集的定義直接判斷即可;
(2)利用自鄰集的定義求出的自鄰集中最大元集分別為6,5,3的所有自鄰集,從而可得答案;
(3)記集合所有子集中自鄰集的個數(shù)為,可得,然后分:①自鄰集中含這三個元素,②自鄰集中含有這兩個元素,不含,且不只有這兩個元素,③自鄰集只含有這兩個元素,三種情況求解即可
【詳解】解:(1)因為,
所以和,
因為,所以不是的自鄰集,
因為
所以是的自鄰集,
(2),
則其自鄰集中最大元素為6的集合中必含5和6,則有{5,6},{4,5,6},{3,4,5,6},{2,3,5,6},{1,2,5,6},{2,3,4,5,6},{1,2,3,5,6},{1,2,4,5,6},{1,2,3,4,5,6}共9個,即
其自鄰集中最大元素為5的集合中必含4和5,則有{4,5},{3,4,5},{2,3,4,5},{1,2,4,5},{1,2,3,4,5}共5個,
其自鄰集中最大元素為3的集合中必含2和3,則有{2,3},{1,2,3}共2個,
所以
(3)證明:記集合所有子集中自鄰集的個數(shù)為,由題意可得當時,,,顯然
①自鄰集中含這三個元素,記去掉這個自鄰集中的元素后的集合為,因為,所以仍是自鄰集,且集合中的最大元素為,所以含有這三個元素的自鄰集的個數(shù)為,
②自鄰集中含有這兩個元素,不含,且不只有這兩個元素,記自鄰集除之外最大元素為,則,每個自鄰集中去掉這兩個元素后,仍為自鄰集,此時的自鄰集的最大元素為,可將此時的自鄰集分為種情況:
含有最大數(shù)為2的集合個數(shù)為
含有最大數(shù)為3的集合個數(shù)為
……,含有最大數(shù)為的集合個數(shù)為
則這樣的集合共有,
③自鄰集只含有這兩個元素,這樣自鄰集只有1個,
綜上可得
因為,,
所以,
所以,所以萬州二中教育集團高2023級高一上期10月聯(lián)考
數(shù)學試題
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.下列說法正確的是
A.我校愛好足球的同學組成一個集合
B.是不大于3的自然數(shù)組成的集合
C.集合和表示同一集合
D.數(shù)1,0,5,,,,組成的集合有7個元素
2.若全集且,則集合的真子集共有()
A.個B.個C.個D.個
3.“兩個三角形相似”是“兩個三角形三邊成比例”的()
A.充分不必要條件B.必要不充分條件
C充分必要條件D.既不充分也不必要條件
4.下列四個命題為真命題的是()
A.若,則B.若,則
C.若,則D.若,則
5.設(shè)全集,集合,,則下列運算關(guān)系正確的是().
A.B.
C.D.
6.若命題“,使得成立”為假命題,則實數(shù)a的取值范圍是()
A.[1,+∞)B.[0,+∞)C.(,1)D.(,0]
7.設(shè),若不等式的解集是,則不等式的解集為()
A.B.
C.D.
8.若對任意實數(shù),不等式恒成立,則實數(shù)a最小值為()
A.B.C.D.
二、多選題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.
9.下列關(guān)于符號“”使用正確的有()
A.B.
C.D.
10.下列命題為真命題的是()
A.,
B.設(shè)全集為,若,則
C.“”是“”的必要不充分條件
D.“和都是無理數(shù)”是“是無理數(shù)”的必要不充分條件
11.已知關(guān)于x不等式的解集為,則()
A.為定值
B.最小值為
C.的最大值為
D.無最小值
12.已知,且,則下列結(jié)論正確的是()
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版小學語文2021年真卷四年級下冊期末試卷(含答案)
- 綠化管理合同(2篇)
- 新版北師版一年級下冊數(shù)學課件六 有趣的平面圖形(一)第5課時 拼圖大挑戰(zhàn)
- 電動汽車充電設(shè)施的智能調(diào)度系統(tǒng)研究
- 外研版高中英語選擇性必修第四冊UNIT2 Period5課件
- 一建《法規(guī)及相關(guān)知識》試題庫資料練習含【參考答案-】卷28
- Module8練習(單元測試)英語四年級下冊-外研版(一起)(含答案)
- 企業(yè)預核名申請書
- 汽車工業(yè)中生物質(zhì)能的前沿技術(shù)與突破
- 2025年中國加油站行業(yè)市場運行現(xiàn)狀及投資規(guī)劃建議報告
- 廣東省汕尾市汕尾市2024年中考一模英語試題(含答案)
- LY/T 3378-2024木蠟油地板
- 元宵節(jié)猜燈謎 11
- 施工現(xiàn)場視頻監(jiān)控系統(tǒng)施工方案
- (正式版)JTT 1495-2024 公路水運危險性較大工程安全專項施工方案審查規(guī)程
- 2024年演出經(jīng)紀人考試必背1000題一套
- 20G520-1-2鋼吊車梁(6m-9m)2020年合訂本
- (正式版)JBT 1050-2024 單級雙吸離心泵
- 華師大版數(shù)學七年級下冊全冊教案
- 招商代理及商業(yè)運營服務 投標方案(技術(shù)方案)
- 小學數(shù)學六年級解方程練習600題及答案
評論
0/150
提交評論