江蘇省南通市通州區(qū)海安縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
江蘇省南通市通州區(qū)海安縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
江蘇省南通市通州區(qū)海安縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
江蘇省南通市通州區(qū)海安縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
江蘇省南通市通州區(qū)海安縣2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省南通市通州區(qū)海安縣2024屆高二數(shù)學第一學期期末達標檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在2.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b23.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.4.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.5.設(shè)點是點,,關(guān)于平面的對稱點,則()A.10 B.C. D.386.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.7.已知向量,,,若,則實數(shù)()A. B.C. D.8.橢圓的焦點為、,上頂點為,若,則()A B.C. D.9.已知圓與圓相交于A、B兩點,則圓上的動點P到直線AB距離的最大值為()A. B.C. D.10.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),12.等差數(shù)列中,若,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若“”是“”必要不充分條件,則實數(shù)的最大值為_______14.已知是橢圓的兩個焦點,分別是該橢圓的左頂點和上頂點,點在線段上,則的最小值為__________.15.如圖,在四棱錐中,平面,底面為矩形,分別為的中點,連接,則點到平面的距離為__________.16.設(shè)Sn是數(shù)列{an}的前n項和,且a1=-1,an+1=SnSn+1,則Sn=__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.18.(12分)已知是等差數(shù)列,是等比數(shù)列,且,,,.(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和.19.(12分)如圖,四棱錐中,平面、底面為菱形,為的中點.(1)證明:平面;(2)設(shè),菱形的面積為,求二面角的余弦值.20.(12分)已知橢圓上的點到橢圓焦點的最大距離為3,最小距離為1(1)求橢圓的標準方程;(2)已知,分別是橢圓的左右頂點,是橢圓上異于,的任意一點,直線,分別交軸于點,,求的值21.(12分)某高中招聘教師,首先要對應(yīng)聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應(yīng)聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應(yīng)聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應(yīng)聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應(yīng)聘者的面試成績X的分布列及數(shù)學期望22.(10分)如圖,在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.已知b=3,c=6,,且AD為BC邊上的中線,AE為∠BAC的角平分線(1)求及線段BC的長;(2)求△ADE的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.2、A【解析】利用三次函數(shù)的單調(diào)性,通過其導數(shù)進行研究,求出導數(shù),利用其導數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點睛】可導函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進行求解.3、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.4、B【解析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.5、A【解析】寫出點坐標,由對稱性易得線段長【詳解】點是點,,關(guān)于平面的對稱點,的橫標和縱標與相同,而豎標與相反,,,,直線與軸平行,,故選:A6、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點的距離不超過1,則所以當時,可以為5,6當時,可以為4,5,6當時,可以為4,5,6當時,可以為2,3,4,5,6當時,可以為1,2,3,4,5,6當時,可以為1,2,3,4,5,6滿足的共有25種結(jié)果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,共有種結(jié)果所以滿足條件的概率為故選:C7、C【解析】先根據(jù)題意求出,然后再根據(jù)得出,最后通過計算得出結(jié)果.【詳解】因為,,所以,又,,所以,即,解得.故選:.【點睛】本題主要考查向量數(shù)量積的坐標運算及向量垂直的相關(guān)性質(zhì),熟記運算法則即可,屬于??碱}型.8、C【解析】分析出為等邊三角形,可得出,進而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因為橢圓的上頂點為點,焦點為、,所以,,為等邊三角形,則,即,因此,.故選:C.9、A【解析】判斷圓與的位置并求出直線AB方程,再求圓心C到直線AB距離即可計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,,即圓與相交,直線AB方程為:,圓的圓心,半徑,點C到直線AB距離的距離,所以圓C上的動點P到直線AB距離的最大值為.故選:A10、D【解析】當時,不是遞增數(shù)列;當且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列11、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B12、C【解析】由等差數(shù)列下標和性質(zhì)可得.【詳解】因為,,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)的解集為集合,由題意可得是的真子集,即可求解.【詳解】由得或,因為“”是“”的必要不充分條件,設(shè)或,,因為“”是“”的必要不充分條件,所以是的真子集,所以故答案為:【點睛】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)是的充分不必要條件,則對應(yīng)集合是對應(yīng)集合的真子集;(3)是的充分必要條件,則對應(yīng)集合與對應(yīng)集合相等;(4)是的既不充分又不必要條件,對的集合與對應(yīng)集合互不包含14、【解析】由題可設(shè),則,然后利用數(shù)量積坐標表示及二次函數(shù)的性質(zhì)即得.【詳解】由題可得,,設(shè),因為點P在線段AB上,所以,∴,∴當時,的最小值為.故答案為:.15、【解析】利用轉(zhuǎn)化法,根據(jù)線面平行的性質(zhì),結(jié)合三棱錐的體積等積性進行求解即可.【詳解】設(shè)是的中點,連接,因為是的中點,所以,因為平面,平面,所以平面,因此點到平面的距離等于點到平面的距離,設(shè)為,因為平面,所以,,于是有,底面為矩形,所以有,,因為平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因為,所以,故答案為:16、-.【解析】因為,所以,所以,即,又,即,所以數(shù)列是首項和公差都為的等差數(shù)列,所以,所以考點:數(shù)列的遞推關(guān)系式及等差數(shù)列的通項公式【方法點晴】本題主要考查了數(shù)列的通項公式、數(shù)列的遞推關(guān)系式的應(yīng)用、等差數(shù)列的通項公式及其性質(zhì)定知識點的綜合應(yīng)用,解答中得到,,確定數(shù)列是首項和公差都為的等差數(shù)列是解答的關(guān)鍵,著重考查了學生靈活變形能力和推理與論證能力,平時應(yīng)注意方法的積累與總結(jié),屬于中檔試題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結(jié)合即可求P的軌跡方程;(2)假設(shè)存在T(0,t),設(shè)AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設(shè)存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設(shè)直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.18、(1)(2)【解析】(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,運用通項公式可得,,進而得到所求通項公式;(2)求得,再由數(shù)列的求和方法:分組求和,運用等差數(shù)列和等比數(shù)列的求和公式,計算即可得到所求和.【小問1詳解】解:(1)設(shè)是公差為d的等差數(shù)列,是公比為q的等比數(shù)列,由,,可得,;即有,,則,則;【小問2詳解】解:,則數(shù)列的前n項和為.19、(1)證明見解析;(2).【解析】(1)連接交于點,連接,則,利用線面平行的判定定理,即可得證;(2)根據(jù)題意,求得菱形的邊長,取中點,可證,如圖建系,求得點坐標及坐標,即可求得平面的法向量,根據(jù)平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點,連接,則、E分別為、的中點,所以,又平面平面所以平面(2)由菱形的面積為,,易得菱形邊長為,取中點,連接,因為,所以,以點為原點,以方向為軸,方向為軸,方向為軸,建立如圖所示坐標系.則所以設(shè)平面的法向量,由得,令,則所以一個法向量,因為,,所以平面PAD,所以平面的一個法向量所以,又二面角為銳二面角,所以二面角的余弦值為【點睛】解題的關(guān)鍵是熟練掌握證明平行的定理,證明線面平行時,常用中位線法和平行四邊形法來證明;利用空間向量求解二面角為??碱}型,步驟為建系、求點坐標、求所需向量坐標、求法向量、利用夾角公式求解,屬基礎(chǔ)題.20、(1);(2)-1.【解析】(1)根據(jù)橢圓的性質(zhì)進行求解即可;(2)根據(jù)直線的方程,結(jié)合平面向量數(shù)量積的坐標表示公式進行求解即可.【小問1詳解】由題意得,,,所以,橢圓.【小問2詳解】由題意可知,,設(shè),則,直線,直線分別令得,,,.【點睛】關(guān)鍵點睛:運用平面向量數(shù)量積的坐標表示公式進行求解是解題的關(guān)鍵.21、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨立事件的概率乘法公式分別求出對應(yīng)的概率,列出分布列即可求出數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論