![江西省贛州一中2023年高三下學期模擬考試數(shù)學試題試卷_第1頁](http://file4.renrendoc.com/view/ee99995aca5580e442ee137a9110539e/ee99995aca5580e442ee137a9110539e1.gif)
![江西省贛州一中2023年高三下學期模擬考試數(shù)學試題試卷_第2頁](http://file4.renrendoc.com/view/ee99995aca5580e442ee137a9110539e/ee99995aca5580e442ee137a9110539e2.gif)
![江西省贛州一中2023年高三下學期模擬考試數(shù)學試題試卷_第3頁](http://file4.renrendoc.com/view/ee99995aca5580e442ee137a9110539e/ee99995aca5580e442ee137a9110539e3.gif)
![江西省贛州一中2023年高三下學期模擬考試數(shù)學試題試卷_第4頁](http://file4.renrendoc.com/view/ee99995aca5580e442ee137a9110539e/ee99995aca5580e442ee137a9110539e4.gif)
![江西省贛州一中2023年高三下學期模擬考試數(shù)學試題試卷_第5頁](http://file4.renrendoc.com/view/ee99995aca5580e442ee137a9110539e/ee99995aca5580e442ee137a9110539e5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州一中2023年高三下學期模擬考試數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.2.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.13.復數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.復數(shù)在復平面內對應的點為則()A. B. C. D.5.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.6.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.7.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.8.已知m為實數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.已知函數(shù),若關于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.10.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.11.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元12.復數(shù)的共軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.驗證碼就是將一串隨機產生的數(shù)字或符號,生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識別其中的驗證碼信息,輸入表單提交網站驗證,驗證成功后才能使用某項功能.很多網站利用驗證碼技術來防止惡意登錄,以提升網絡安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗證碼由0,1,2,…,9中的五個數(shù)字隨機組成.將中間數(shù)字最大,然后向兩邊對稱遞減的驗證碼稱為“鐘型驗證碼”(例如:如14532,12543),已知某人收到了一個“鐘型驗證碼”,則該驗證碼的中間數(shù)字是7的概率為__________.14.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.15.已知數(shù)列的前項和為,且滿足,則______16.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了解本學期學生參加公益勞動的情況,某校從初高中學生中抽取100名學生,收集了他們參加公益勞動時間(單位:小時)的數(shù)據(jù),繪制圖表的一部分如表.(1)從男生中隨機抽取一人,抽到的男生參加公益勞動時間在的概率:(2)從參加公益勞動時間的學生中抽取3人進行面談,記為抽到高中的人數(shù),求的分布列;(3)當時,高中生和初中生相比,那學段學生平均參加公益勞動時間較長.(直接寫出結果)18.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.19.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.21.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.22.(10分)已知函數(shù),函數(shù)().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.2、A【解析】
根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.3、C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.4、B【解析】
求得復數(shù),結合復數(shù)除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數(shù)及其坐標的對應,考查復數(shù)的除法運算,屬于基礎題.5、D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).6、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.7、A【解析】
由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應用,數(shù)形結合思想,屬于中檔題8、A【解析】
根據(jù)直線平行的等價條件,求出m的值,結合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗看兩直線是否重合.9、C【解析】
求導,先求出在單增,在單減,且知設,則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構造法:構造函數(shù)(易求,可解),轉化為確定的零點個數(shù)問題求解,利用導數(shù)研究該函數(shù)的單調性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導數(shù)研究函數(shù)的單調性、極值(最值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).10、D【解析】
由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.11、D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.12、A【解析】
根據(jù)復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先判斷出中間號碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計算公式計算出所求概率.【詳解】根據(jù)“鐘型驗證碼”中間數(shù)字最大,然后向兩邊對稱遞減,所以中間的數(shù)字可能是.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.所以該驗證碼的中間數(shù)字是7的概率為.故答案為:【點睛】本小題主要考查古典概型概率計算,考查分類加法計數(shù)原理、分類乘法計數(shù)原理的應用,考查運算求解能力,屬于中檔題.14、【解析】
如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.15、【解析】
對題目所給等式進行賦值,由此求得的表達式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項為1,公比為的等比數(shù)列,可得.【點睛】本小題主要考查已知求,考查等比數(shù)列前項和公式,屬于中檔題.16、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析(3)初中生平均參加公益勞動時間較長【解析】
(1)由圖表直接利用隨機事件的概率公式求解;(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;(3)由圖表直接判斷結果.【詳解】(1)100名學生中共有男生48名,其中共有20人參加公益勞動時間在,設男生中隨機抽取一人,抽到的男生參加公益勞動時間在的事件為,那么;(2)的所有可能取值為0,1,2,3.∴;;;.∴隨機變量的分布列為:(3)由圖表可知,初中生平均參加公益勞動時間較長.【點睛】本小題主要考查古典概型的計算,考查超幾何分布的分布列的計算,屬于基礎題.18、(1),;(2).【解析】
(1)根據(jù)面積公式和數(shù)量積性質求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數(shù)量積的性質及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.19、(1),定義域是.(2)百萬【解析】
(1)以為原點,直線為軸建立如圖所示的直角坐標系,設,利用直線與圓相切得到,再代入這一關系中,即可得答案;(2)利用導數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標系.設,則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當時,,設銳角滿足,則,所以關于的函數(shù)是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最?。睿?,設銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數(shù)模型的實際應用、利用導數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.20、(1)見解析;(2)見解析【解析】
(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家政行業(yè)家居清潔培訓總結
- 2025-2030全球合成油田緩蝕劑行業(yè)調研及趨勢分析報告
- 2025年全球及中國車輛液壓制動管路行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國流體攝像三腳架云臺行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國濃縮杏汁行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球帳篷地釘行業(yè)調研及趨勢分析報告
- 2025年全球及中國有隔板高效空氣過濾器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國個人護理用辛酰甘氨酸行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球單擺銑頭行業(yè)調研及趨勢分析報告
- 山東省臨沂一中高三9月月考語文(文科)試題(含答案)
- 2024-2025年突發(fā)緊急事故(急救護理學)基礎知識考試題庫與答案
- 左心耳封堵術護理
- 2024年部編版八年級語文上冊電子課本(高清版)
- 合唱課程課件教學課件
- 2024-2025學年廣東省大灣區(qū)40校高二上學期聯(lián)考英語試題(含解析)
- 旅拍店兩人合作協(xié)議書范文
- 2024-2030年電炒鍋項目融資商業(yè)計劃書
- 技術成熟度評價標準
- 衛(wèi)生院中醫(yī)、康復??平ㄔO實施方案-
- 《公有云服務架構與運維》高職全套教學課件
- 2024中華人民共和國農村集體經濟組織法詳細解讀課件
評論
0/150
提交評論