版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省白城十四中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在數(shù)列中抽取部分項(xiàng)(按原來(lái)的順序)構(gòu)成一個(gè)新數(shù)列,記為,再在數(shù)列插入適當(dāng)?shù)捻?xiàng),使它們一起能構(gòu)成一個(gè)首項(xiàng)為1,公比為3的等比數(shù)列.若,則數(shù)列中第項(xiàng)前(不含)插入的項(xiàng)的和最小為()A.30 B.91C.273 D.8202.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書(shū)中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.13.如圖,是邊長(zhǎng)為4的等邊三角形的中位線,將沿折起,使得點(diǎn)A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.4.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列5.已知命題p:,,則命題p的否定為()A., B.,C., D.,6.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,61,95,則該數(shù)列的第8項(xiàng)為()A.99 B.131C.139 D.1417.在中,角A,B,C所對(duì)的邊分別為a,b,c,已知,則的面積為()A. B.C. D.8.若直線a,b是異面直線,點(diǎn)O是空間中不在直線a,b上的任意一點(diǎn),則()A.不存在過(guò)點(diǎn)O且與直線a,b都相交的直線B.過(guò)點(diǎn)O一定可以作一條直線與直線a,b都相交C.過(guò)點(diǎn)O可以作無(wú)數(shù)多條直線與直線a,b都相交D.過(guò)點(diǎn)O至多可以作一條直線與直線a,b都相交9.下列說(shuō)法錯(cuò)誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實(shí)數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點(diǎn)”的必要不充分條件D.已知,且,則的最小值為910.設(shè)橢圓()的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過(guò)點(diǎn)F且斜率為的直線與C的一個(gè)交點(diǎn)為Q(點(diǎn)Q在x軸上方),且,則C的離心率為()A. B.C. D.11.直線分別與軸,軸交于A,B兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是()A B.C. D.12.直線與直線平行,則兩直線間的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)據(jù)6,8,9,10,7的方差為_(kāi)_____14.已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)的直線交拋物線與兩點(diǎn),且,則拋物線的準(zhǔn)線方程為_(kāi)_______.15.函數(shù)滿足,且,則的最小值為_(kāi)__________.16.已知函數(shù)的圖像在點(diǎn)處的切線方程是,則=______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè),分別是橢圓()的左、右焦點(diǎn),E的離心率為.短軸長(zhǎng)為2.(1)求橢圓E的方程:(2)過(guò)點(diǎn)的直線l交橢圓E于A,B兩點(diǎn),是否存在實(shí)數(shù)t,使得恒成立?若存在,求出t的值;若不存在,說(shuō)明理由.18.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.19.(12分)已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個(gè)不同的實(shí)數(shù)解,求a的取值范圍.20.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并對(duì)其求解.問(wèn)題:已知為數(shù)列的前項(xiàng)和,,且___________.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.21.(12分)已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6⑴求橢圓C的標(biāo)準(zhǔn)方程;⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度22.(10分)已知拋物線的焦點(diǎn)為F,為拋物線C上的點(diǎn),且.(1)求拋物線C的方程;(2)若直線與拋物線C相交于A,B兩點(diǎn),求弦長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先根據(jù)等比數(shù)列的通項(xiàng)公式得到,列出數(shù)列的前6項(xiàng),將其中是數(shù)列的項(xiàng)的所有數(shù)去掉即可求解.【詳解】因?yàn)槭且?為首項(xiàng)、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項(xiàng)分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項(xiàng),3、27、243不是數(shù)列的項(xiàng),且,所以數(shù)列中第7項(xiàng)前(不含)插入的項(xiàng)的和最小為.故選:C.2、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項(xiàng)公式和求和公式進(jìn)行求解.【詳解】設(shè)這個(gè)塔頂層有盞燈,則問(wèn)題等價(jià)于一個(gè)首項(xiàng)為,公比為2的等比數(shù)列的前7項(xiàng)和為381,所以,解得,所以這個(gè)塔的最底層有盞燈.故選:A.3、A【解析】分別取的中點(diǎn),易得,則點(diǎn)為四邊形的外接圓的圓心,則四棱錐外接球的球心在過(guò)點(diǎn)且垂直平面的直線上,設(shè)球心為,設(shè)外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點(diǎn),在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點(diǎn)為四邊形的外接圓的圓心,則四棱錐外接球的球心在過(guò)點(diǎn)且垂直平面的直線上,設(shè)球心為,由為的中點(diǎn),所以,因?yàn)槠矫嫫矫?,且平面平面,平面,所以平面,則,設(shè)外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷4、D【解析】由,化簡(jiǎn)得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項(xiàng)為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.5、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫(xiě),即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.6、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項(xiàng)為,根據(jù)所給定義,用數(shù)列的后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,得到的數(shù)列也用后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,即得到了一個(gè)等差數(shù)列,如圖:由圖可得,則.故選:D7、A【解析】由余弦定理計(jì)算求得角,根據(jù)三角形面積公式計(jì)算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A8、D【解析】設(shè)直線與點(diǎn)確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫(huà)圖說(shuō)明即可.【詳解】點(diǎn)是空間中不在直線,上的任意一點(diǎn),設(shè)直線與點(diǎn)確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過(guò)點(diǎn)且與直線,都相交的直線;②若與不平行,則直線即為過(guò)點(diǎn)且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過(guò)點(diǎn)且與直線,都相交的直線.綜上所述,過(guò)點(diǎn)至多有一條直線與直線,都相交.故選:D.9、C【解析】對(duì)于A:用存在量詞否定全稱命題,直接判斷;對(duì)于B:根據(jù)充分不必要條件直接判斷;對(duì)于C:判斷出“”是“函數(shù)在內(nèi)有零點(diǎn)”的充分不必要條件,即可判斷;對(duì)于D:利用基本不等式求最值.【詳解】對(duì)于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對(duì)于B:若“”是“或”的充分不必要條件,所以,即實(shí)數(shù)m的最大值為2021.故B正確;對(duì)于C:“函數(shù)在內(nèi)有零點(diǎn)”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點(diǎn)”的充分不必要條件.故C錯(cuò)誤;對(duì)于D:已知,且,所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào))故D正確.故選:C10、D【解析】連接Q和右焦點(diǎn),可知|OQ|=,可得∠FQ=90°,由得,寫(xiě)出兩直線方程,聯(lián)立可得Q點(diǎn)坐標(biāo),Q點(diǎn)坐標(biāo)代入橢圓標(biāo)準(zhǔn)方程可得a、b、c關(guān)系﹒【詳解】設(shè)橢圓右焦點(diǎn)為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過(guò)F(-c,0),Q過(guò)(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D11、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點(diǎn)到直線的距離.【詳解】與x,y軸的交點(diǎn),分別為,,點(diǎn)在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A12、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當(dāng)時(shí),,,此時(shí),故兩直線平行時(shí)又之間的距離為,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先求出數(shù)據(jù)的平均值,再應(yīng)用方差公式求它們的方差.【詳解】由題設(shè),平均值為,∴方差.故答案為:2.14、【解析】根據(jù)題意作出圖形,設(shè)直線與軸的夾角為,不妨設(shè),設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作準(zhǔn)線與軸的垂線,垂足分別為,過(guò)點(diǎn)分別作準(zhǔn)線和軸的垂線,垂足分別為,進(jìn)一步可以得到,進(jìn)而求出,同理求出,最后解得答案.【詳解】設(shè)直線與軸的夾角為,根據(jù)拋物線的對(duì)稱性,不妨設(shè),如圖所示.設(shè)拋物線的準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作準(zhǔn)線與軸的垂線,垂足分別為,過(guò)點(diǎn)分別作準(zhǔn)線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準(zhǔn)線方程為:.故答案為:.15、6【解析】化簡(jiǎn)得出,由化簡(jiǎn)后根據(jù)均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以的最小值為6.故答案為:616、3【解析】根據(jù)導(dǎo)數(shù)幾何意義,可得的值,根據(jù)點(diǎn)M在切線上,可求得的值,即可得答案.【詳解】由導(dǎo)數(shù)的幾何意義可得,,又在切線上,所以,則=3,故答案為:3【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,考查分析理解的能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立直線的方程與橢圓方程化簡(jiǎn)可得,設(shè),,可得,,由此證明,再證明當(dāng)直線的斜率不存在時(shí)也成立,由此確定存在實(shí)數(shù)t,使得恒成立【小問(wèn)1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問(wèn)2詳解】當(dāng)直線l的斜率存在時(shí),設(shè),,,聯(lián)立方程組得,,所以,..,,所以.所以.當(dāng)直線l的斜率不存在時(shí),,聯(lián)立方程組,得,.,,所以.綜上,存在實(shí)數(shù)使得恒成立.【點(diǎn)睛】(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.18、(1)答案見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時(shí),,當(dāng)時(shí),令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問(wèn)1詳解】的定義域?yàn)楫?dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得;綜上所述:當(dāng)時(shí),在上單調(diào)遞增,無(wú)減區(qū)間;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;【小問(wèn)2詳解】,,即證:,即證:當(dāng)時(shí),,,當(dāng)時(shí),令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即19、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義進(jìn)行求解即可;(2)利用常變量分離法,通過(guò)構(gòu)造新函數(shù),由方程有兩個(gè)不同的實(shí)數(shù)解問(wèn)題,轉(zhuǎn)化為兩個(gè)函數(shù)的圖象有兩個(gè)交點(diǎn)問(wèn)題,利用導(dǎo)數(shù)進(jìn)行求解即可.【小問(wèn)1詳解】設(shè)曲線的切點(diǎn)坐標(biāo)為,由,所以過(guò)該切點(diǎn)的切線的斜率為,因此該切線方程為:,因?yàn)橹本€與函數(shù)的圖象相切,所以,因?yàn)橹本€與函數(shù)的圖象相切,且函數(shù)過(guò)原點(diǎn),所以曲線的切點(diǎn)為,于是有,即;【小問(wèn)2詳解】由可得:,當(dāng)時(shí),顯然不成立,當(dāng)時(shí),由,設(shè)函數(shù),,,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,因此當(dāng)時(shí),函數(shù)有最小值,最小值為,而,當(dāng)時(shí),,函數(shù)圖象如下圖所示:方程有兩個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為函數(shù)和函數(shù)的圖象,在當(dāng)時(shí),有兩個(gè)不同的交點(diǎn),由圖象可知:,故a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用常變量分離法,結(jié)合轉(zhuǎn)化法進(jìn)行求解是解題的關(guān)鍵.20、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項(xiàng)的性質(zhì)計(jì)算求解;若選②:利用等比數(shù)列等比中項(xiàng)的性質(zhì)計(jì)算求解,若選③:利用直接計(jì)算;(2)根據(jù)對(duì)數(shù)的運(yùn)算,可知數(shù)列為等差數(shù)列,直接求和即可.小問(wèn)1詳解】由,當(dāng)時(shí),,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項(xiàng)公式為;若選②:由,所以,所以數(shù)列的通項(xiàng)公式為;若選③:由,即,所以數(shù)列的通項(xiàng)公式為;【小問(wèn)2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.21、(1);(2)【解析】(1)由焦點(diǎn)坐標(biāo)可求c值,a值,然后可求出b的值.進(jìn)而求出橢圓C的標(biāo)準(zhǔn)方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達(dá)定理及弦長(zhǎng)公式求出|AB|的長(zhǎng)度【詳解】解:⑴由,長(zhǎng)軸長(zhǎng)為6得:所以∴橢圓方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版瓷磚行業(yè)展會(huì)贊助合同3篇
- 2024泰州旅游行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)范本2篇
- 2024標(biāo)的為800萬(wàn)元的物流服務(wù)合同
- 2025年度綠色節(jié)能產(chǎn)品展銷會(huì)參展服務(wù)合同書(shū)3篇
- 二零二五年度高層管理人才派遣服務(wù)合同2篇
- 2025年度集裝箱金融服務(wù)合同含融資與結(jié)算3篇
- 2024版紗窗訂購(gòu)合同范本
- 2025年度鋼材企業(yè)兼并收購(gòu)合同2篇
- 2024版擔(dān)保個(gè)人借款協(xié)議
- 二手房一次性付款買(mǎi)賣(mài)合同版
- 高職《勞動(dòng)教育》指導(dǎo)綱要
- XX公司年會(huì)活動(dòng)報(bào)價(jià)單
- 鋼鐵生產(chǎn)企業(yè)溫室氣體核算與報(bào)告案例
- 農(nóng)業(yè)合作社全套報(bào)表(已設(shè)公式)-資產(chǎn)負(fù)債表-盈余及盈余分配表-成員權(quán)益變動(dòng)表-現(xiàn)金流量表
- 貝利嬰幼兒發(fā)展量表BSID
- 人教部編版八年級(jí)歷史下冊(cè)第7課 偉大的歷史轉(zhuǎn)折課件(共25張PPT)
- SB/T 10863-2012家用電冰箱維修服務(wù)技術(shù)規(guī)范
- 偏癱患者的臨床護(hù)理及康復(fù)評(píng)估課件
- 公路施工期環(huán)保課件
- 檢驗(yàn)科危急值項(xiàng)目范圍考核試題與答案
- 3Q模板 IQOQPQ驗(yàn)證方案模版
評(píng)論
0/150
提交評(píng)論