版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市寧鄉(xiāng)市第十三高級中學2024屆高二數(shù)學第一學期期末教學質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間四邊形OABC中,,,,點M在線段OA上,且,N為BC中點,則等于()A. B.C. D.2.設(shè)等差數(shù)列,的前n項和分別是,,若,則()A. B.C. D.3.經(jīng)過點,且被圓所截得的弦最短時的直線的方程為()A. B.C. D.4.直線與圓相交于點,點是坐標原點,若是正三角形,則實數(shù)的值為A.1 B.-1C. D.5.已知等比數(shù)列的前3項和為3,,則()A. B.4C. D.16.如圖,在平行六面體中,()A. B.C. D.7.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.38.在正方體中,P,Q兩點分別從點B和點出發(fā),以相同的速度在棱BA和上運動至點A和點,在運動過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.9.已知在空間直角坐標系(O為坐標原點)中,點關(guān)于x軸的對稱點為點B,則z軸與平面OAB所成的線面角為()A. B.C. D.10.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.已知函數(shù),若,,則實數(shù)的取值范圍是A. B.C. D.12.阿基米德是古希臘著名的數(shù)學家、物理學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標系中,橢圓的面積為,兩焦點與短軸的一個端點構(gòu)成等邊三角形,則橢圓的標準方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓相交于兩點M,N,若滿足,則________14.如圖莖葉圖記錄了A、兩名營業(yè)員五天的銷售量,若A的銷售量的平均數(shù)比的銷售量的平均數(shù)多1,則A營業(yè)員銷售量的方差為___________.15.盒子中放有大小和質(zhì)地相同的2個白球、1個黑球,從中隨機摸取2個球,恰好都是白球的概率為___________.16.經(jīng)過點,圓心在x軸正半軸上,半徑為5的圓的方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實數(shù)x的取值范圍.(2)若p是q的充分條件,求實數(shù)m的取值范圍;18.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和19.(12分)設(shè)是首項為的等差數(shù)列的前項和,是首項為1的等比數(shù)列的前項和,為數(shù)列的前項和,為數(shù)列的前項和,已知.(1)若,求;(2)若,求.20.(12分)已知銳角的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,求外接圓面積的最小值.21.(12分)已知函數(shù)(1)當時,求的極值;(2)討論的單調(diào)性22.(10分)如圖,已知平面,底面為正方形,,分別為的中點(1)求證:平面;(2)求與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由題意結(jié)合圖形,直接利用,求出,然后即可解答.【詳解】解:因為空間四邊形OABC如圖,,,,點M在線段OA上,且,N為BC的中點,所以.所以.故選:B.2、B【解析】利用求解.【詳解】解:因為等差數(shù)列,的前n項和分別是,所以.故選:B3、C【解析】當是弦中點,她能時,弦長最短.由此可得直線斜率,得直線方程【詳解】根據(jù)題意,圓心為,當與直線垂直時,點被圓所截得的弦最短,此時,則直線的斜率,則直線的方程為,變形可得,故選:C.【點睛】本題考查直線與圓相交弦長問題,掌握垂徑定理是求解圓弦長問題的關(guān)鍵4、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設(shè)圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C5、D【解析】設(shè)等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項公式可求得,,代入即可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項和為3,故,即,解得故選:D6、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.7、C【解析】由可得出,利用空間向量數(shù)量積的坐標運算可得出關(guān)于實數(shù)的等式,由此可解得實數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C8、C【解析】先過點作于點,連接,根據(jù)題意,得到即為直線與平面所成的角,設(shè)正方體棱長為,設(shè),推出,進而可求出結(jié)果.【詳解】過點作于點,連接,因為四棱柱為正方體,所以易得平面,因此即為直線與平面所成的角,設(shè)正方體棱長為,設(shè),則,,因為兩點分別從點和點出發(fā),以相同的速度在棱和上運動至點和點,所以,因此,所以,因為,所以,則,因此.故選:C.【點睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.9、B【解析】根據(jù)點關(guān)于坐標軸對稱的性質(zhì),結(jié)合空間向量夾角公式進行求解即可.【詳解】因為點關(guān)于x軸的對稱點為,所以,設(shè)平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設(shè)z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B10、D【解析】根據(jù)空間直線與平面間的位置關(guān)系判斷【詳解】若,,也可以有,A錯;若,,也可以有,B錯;若,,則或,C錯;若,,則,這是線面垂直的判定定理之一,D正確故選:D11、A【解析】函數(shù),若,,可得,解得或,則實數(shù)的取值范圍是,故選A.12、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標準方程是.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由點到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【詳解】因為,所以,所以,圓心到直線的距離因為,所以,所以故答案為:14、44【解析】先根據(jù)題意求出x的值,進而利用方差公式求出A營業(yè)員銷售量的方差.【詳解】由A的平均數(shù)比的平均數(shù)多1知,A的總量比的總量多5,所以,A的平均數(shù)為17,方差為.故答案為:4415、【解析】根據(jù)題意得到,計算得到答案.【詳解】根據(jù)題意:.故答案為:16、【解析】設(shè)圓方程為,代入原點計算得到答案.【詳解】設(shè)圓方程為經(jīng)過點,代入圓方程則圓方程為故答案為【點睛】本題考查了圓方程的計算,設(shè)出圓方程是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉(zhuǎn)化為集合的包含關(guān)系,從而可求實數(shù)m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以19、(1)或(2)【解析】(1)列方程組解得等差數(shù)列的公差,即可求得其前項和;(2)列方程組解得等差數(shù)列的公差和等比數(shù)列的公比,以錯位相減法即可求得數(shù)列的前項和.【小問1詳解】設(shè)的公差為,的公比為,則,,因為即,解之得或,又因為,得所以或,故,或【小問2詳解】因為,所以,所以由解得(舍去)或,于是得,所以,因為,(1)所以,(2)所以由(1)(2)得:故20、(1)(2)【解析】(1)利用二倍角公式將已知轉(zhuǎn)化為正弦函數(shù),解一元二次方程可得;(2)由余弦定理和(1)可求a的最小值,再由正弦定理可得外接圓半徑的最小值,然后可解.【小問1詳解】因為,所以,解得或(舍去),又為銳角三角形,所以.【小問2詳解】因為,當且僅當時,等號成立,所以.外接圓的半徑,故外接圓面積的最小值為.21、(1)極小值為,無極大值(2)答案見解析【解析】(1)求出導函數(shù),由得增區(qū)間,得減區(qū)間,從而得極值;(2)求出導函數(shù),分類討論確定和解得單調(diào)性小問1詳解】當時,,(x>0)則令,得,得,得,所以的單調(diào)遞減區(qū)間為;單調(diào)遞增區(qū)間為.所以的極小值為f(2)=,無極大值.【小問2詳解】令則當時,在上單調(diào)遞減.當時,,得,,得;,得在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智慧農(nóng)業(yè)項目合作合同范本4篇
- 二零二五年度農(nóng)產(chǎn)品供應(yīng)鏈金融服務(wù)合同7篇
- 二零二五年度廚師食材采購與成本控制服務(wù)合同3篇
- 二零二五年度新能源研發(fā)中心聘請兼職勞務(wù)合同4篇
- 2025年文化創(chuàng)意產(chǎn)業(yè)貨款合同退款及知識產(chǎn)權(quán)保護協(xié)議3篇
- 二零二五年度排水管道安裝與水質(zhì)監(jiān)測服務(wù)合同3篇
- 二零二五年度農(nóng)藥研發(fā)成果轉(zhuǎn)化與應(yīng)用合同3篇
- 2025年度個人投資理財顧問委托合同3篇
- 2025版特色商業(yè)街區(qū)門面店裝修施工合同2篇
- 2025年度民品典當借款合同標準化文本4篇
- 有砟軌道施工工藝課件
- 兩辦意見八硬措施煤礦安全生產(chǎn)條例宣貫學習課件
- 40篇短文搞定高中英語3500單詞
- 人教版高中數(shù)學必修二《第九章 統(tǒng)計》同步練習及答案解析
- 兒科護理安全警示教育課件
- 三年級下冊口算天天100題
- 國家中英文名稱及代碼縮寫(三位)
- 人員密集場所消防安全培訓
- 液晶高壓芯片去保護方法
- 使用AVF血液透析患者的護理查房
- 拜太歲科儀文檔
評論
0/150
提交評論