湖北省武漢市華科附中、吳家山中學(xué)等五校2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
湖北省武漢市華科附中、吳家山中學(xué)等五校2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
湖北省武漢市華科附中、吳家山中學(xué)等五校2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
湖北省武漢市華科附中、吳家山中學(xué)等五校2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
湖北省武漢市華科附中、吳家山中學(xué)等五校2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省武漢市華科附中、吳家山中學(xué)等五校2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一個圓錐體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.2.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準線交于點,若,則的斜率為()A. B.C. D.3.設(shè)為坐標原點,拋物線的焦點為,為拋物線上一點.若,則的面積為()A. B.C. D.4.方程表示的曲線經(jīng)過的一點是()A. B.C. D.5.已知,,,則下列判斷正確的是()A. B.C. D.6.設(shè)命題,則為A. B.C. D.7.已知等差數(shù)列且,則數(shù)列的前13項之和為()A.26 B.39C.104 D.528.設(shè)直線,.若,則的值為()A.或 B.或C. D.9.一條直線過原點和點,則這條直線的傾斜角是()A. B.C. D.10.在四棱錐中,底面是正方形,為的中點,若,則()A B.C. D.11.設(shè)太陽光線垂直于平面,在陽光下任意轉(zhuǎn)動棱長為一個單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.12.設(shè)等比數(shù)列的前項和為,若,,則()A.66 B.65C.64 D.63二、填空題:本題共4小題,每小題5分,共20分。13.若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_____(請?zhí)钏姓_命題的序號)14.動直線,恒過的定點是________15.點到直線的距離為______.16.?dāng)?shù)學(xué)家歐拉年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F(xiàn),G分別為線段AD,DC,PB的中點.(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.18.(12分)已知等差數(shù)列滿足,(1)求數(shù)列的通項公式及前10項和;(2)等比數(shù)列滿足,,求和:19.(12分)在三棱錐A—BCD中,已知CB=CD=,BD=2,O為BD的中點,AO⊥平面BCD,AO=2,E為AC的中點(1)求直線AB與DE所成角的余弦值;(2)若點F在BC上,滿足BF=BC,設(shè)二面角F—DE—C的大小為θ,求sinθ的值20.(12分)已知拋物線C:經(jīng)過點(1,-1).(1)求拋物線C的方程及其焦點坐標;(2)過拋物線C上一動點P作圓M:的一條切線,切點為A,求切線長|PA|的最小值.21.(12分)已知函數(shù),.(1)若函數(shù)與在x=1處的切線平行,求函數(shù)在處的切線方程;(2)當(dāng)時,若恒成立,求實數(shù)a的取值范圍.22.(10分)如圖,四棱錐P-ABCD的底面是矩形,底面ABCD,,M為BC中點,且.(1)求BC;(2)求二面角A-PM-B的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B2、C【解析】設(shè)直線的方程為,其中,設(shè)點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設(shè)直線的方程為,其中,設(shè)點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.3、D【解析】先由拋物線方程求出點的坐標,準線方程為,再由可求得點的橫坐標為4,從而可求出點的縱坐標,進而可求出的面積【詳解】由題意可得點的坐標,準線方程為,因為為拋物線上一點,,所以點的橫坐標為4,當(dāng)時,,所以,所以的面積為,故選:D4、C【解析】當(dāng)時可得,可得答案.【詳解】當(dāng)時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C5、A【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性,以及根式的運算,確定的大小關(guān)系,則問題得解.【詳解】因為,即;又,故.故選:A.6、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項為C.7、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項之和為,故選:A8、A【解析】由兩直線垂直可得出關(guān)于實數(shù)的等式,即可解得實數(shù)的值.【詳解】因為,則,解得或.故選:A.9、C【解析】求出直線的斜率,結(jié)合傾斜角的取值范圍可求得所求直線的傾斜角.【詳解】設(shè)這條件直線的傾斜角為,則,,因此,.故選:C.10、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.11、C【解析】確定正方體投影面積最大時,是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設(shè)正方體投影最大時,是投影面與平面AB'C平行,三個面的投影為兩個全等的菱形,其對角線為,即投影面上三條對角線構(gòu)成邊長為的等邊三角形,如圖所示,所以投影面積為故選:C12、B【解析】根據(jù)等比數(shù)列前項和的片段和性質(zhì)求解即可.【詳解】解:由題知:,,,所以,,成等比數(shù)列,即5,15,成等比數(shù)列,所以,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】①求出F(x)=f(x)﹣g(x)的導(dǎo)數(shù),檢驗在x∈(,0)內(nèi)的導(dǎo)數(shù)符號,即可判斷;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對一切實數(shù)x成立,即有△1≤0,又kx+b對一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質(zhì),求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對一切實數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對,③錯;④函數(shù)f(x)和h(x)的圖象在x處有公共點,因此存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當(dāng)x∈R恒成立,則△≤0,只有k=2,此時直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當(dāng)x時,G′(x)=0,當(dāng)0<x時,G′(x)<0,當(dāng)x時,G′(x)>0,則當(dāng)x時,G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當(dāng)x>0時恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【點睛】本題以命題的真假判斷與應(yīng)用為載體,考查新定義,關(guān)鍵是對新定義的理解,考查函數(shù)的求導(dǎo),利用導(dǎo)數(shù)求最值,屬于難題.14、【解析】將直線方程轉(zhuǎn)化為,從而可得,即可得到結(jié)果.【詳解】∵,∴∴,解得:x=2,y=2.即方程(a∈R)所表示的直線恒過定點(2,2)故答案為:15、【解析】直接利用點到直線的距離公式計算即可.【詳解】點到直線的距離為.故答案為:.16、【解析】求出線段的垂直平分線方程,與歐拉線方程聯(lián)立,求出的外接圓圓心坐標,并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯(lián)立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接EC,設(shè)EB與AC相交于點O,結(jié)合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結(jié)合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進而可證得結(jié)論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,利用空間向量求解即可【小問1詳解】證明:連接EC,設(shè)EB與AC相交于點O,如圖,因為BC//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O(shè)為EB的中點,又因為G為PB的中點,所以O(shè)G為△PBE的中位線,即OG∥PE,因為OG平面PEF,PE?平面PEF,所以O(shè)G//平面PEF,因為E,F(xiàn)分別為線段AD,DC的中點,所以EF//AC,因為AC平面PEF,EF?平面PEF,所以AC//平面PEF,因為OG?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因為PF?平面PEF,所以PF//平面GAC.【小問2詳解】因為PA⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因為AB⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設(shè)平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設(shè)直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.18、(1),175(2)【解析】(1)由已知結(jié)合等差數(shù)列的通項公式先求出公差,然后結(jié)合通項公式及求和公式即可求解;(2)結(jié)合等比數(shù)列的性質(zhì)先求出,然后結(jié)合等比數(shù)列性質(zhì)及求和公式可求【小問1詳解】解:等差數(shù)列滿足,,所以,,;【小問2詳解】解:因為等比數(shù)列滿足,,所以或(舍去),由等比數(shù)列的性質(zhì)可知,是以1為首項,4為公比的等比數(shù)列,所以,所以19、(1)(2)【解析】(1)建立空間直角坐標系,利用向量數(shù)量積求直線向量夾角,即得結(jié)果;(2)先求兩個平面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.【詳解】(1)連以為軸建立空間直角坐標系,則從而直線與所成角的余弦值為(2)設(shè)平面一個法向量為令設(shè)平面一個法向量為令因此【點睛】本題考查利用向量求線線角與二面角,考查基本分析求解能力,屬中檔題.20、(1),焦點坐標為;(2)【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設(shè)出點坐標,根據(jù)切線垂直于半徑,根據(jù)點到點距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解出的最小值.【小問1詳解】解:因為拋物線過點,所以,解得,所以拋物線的方程為:,焦點坐標為;【小問2詳解】解:設(shè),因為為圓的切線,所以,,所以,所以當(dāng)時,四邊形有最小值且最小值為.21、(1);(2).【解析】(1)求出函數(shù)的導(dǎo)數(shù),利用切線平行求出a,即可求出切線方程;(2)先把已知條件轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】(1),故,而,故,故,解得:,故,故的切線方程是:,即;(2)當(dāng)時,恒成立等價于,令,.則,令,解得:;令,解得:;所以在上單減,在上單增,所以,所以.即實數(shù)a的取值范圍為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論