版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
考試形式:閉卷□、開卷□,允許帶計算器入場一二三四五六七八九裝1.設A,B,C為三個事件,則A,B,C不全發(fā)生可以表示為().2.對于任意概率不為零的事件A,B,則下列命題肯定正確的是().(A)若A與B互不相容,則A與B也互不相容(B)若A與B相容,則A與B也相容(C)若A與B互不相容,則A與B相互獨立(D)若A與B相互獨立,則A與B也相互獨立訂3.設隨機變量X和Y滿足條件E(XY)=E(X)E(Y),則下列選項中成立的是().(A)D(X?Y)=D(X)?D(Y)(B)D(XY)=D(X)D(Y)(C)D(2X+Y)=4D(X)+D(Y)(D)X與Y相互獨立4.設隨機變量X~N(3,σ2),且P(3<X<6)=0.2,則P(X<0)=().(A)X~N(0,2)(B)F(?x)=1?F(x)(C)X~N(0,4)(D)P(|X|<a)=2F(a)?16.設A與B相互獨立,且P(AB)=,P(AB)=P(AB),則P(A)=().是統(tǒng)計量的是().+x3+x4(B)x1x2x3+μ(C)max(x1,x2,x3,x4)(D)(xEQ\*jc3\*hps13\o\al(\s\up5(2),1)+xEQ\*jc3\*hps13\o\al(\s\up5(2),2)+xEQ\*jc3\*hps13\o\al(\s\up5(2),3))2.設平面區(qū)域D是由曲線y=及直線y=0,x=1,x=e2所圍成的,二維隨機變量(X,Y)在區(qū)域D上服從均勻分布,則(X,Y)的聯(lián)合密度函數(shù)p(x,y)=.3.設隨機變量X的概率密度函數(shù)p(x)=〈4.設隨機變量X~N(?3,2),Y~N(2,1),且與相互獨立.令Z=X?2Y+7,則Z~.5.對于一元線性回歸模型yi=cxi+εi,設有n組觀測值(yi,xi),則c的最小二乘估計就是選擇c使得達到最小.6.設x1,x2,,xn是來自正態(tài)總體X~N(μ,σ2)的一個樣本,則當EQ\*jc3\*hps24\o\al(\s\up0(?),σ)2=時,EQ\*jc3\*hps24\o\al(\s\up0(?),σ)2是總體方差σ2的無偏估計.7.設隨機變量X和Y的數(shù)學期望均為2,方差分別為1和4,而相關系數(shù)為0.5,則根據(jù)切比雪222?4x4)~X222設二維隨機變量(X設二維隨機變量(X,Y)的聯(lián)合分布列為-1XY01-1020020000(3)E(Y),Var(Y);(4)Cov(X,(3)E(Y),Var(Y);(4)Cov(X,Y).裝訂證明{Xk}服從大數(shù)定律.線有一個指示燈亮時,儀器發(fā)生故障的概率為0.4;兩個指示燈都不亮時,儀器發(fā)生故障的概率為0.9.設每個指示燈正常工作是相互獨立的,障的概率.1.(7分)設X~N(0,1),Y~N(0,1),且X與Y相互獨立,求Z=X+Y的概率密度函數(shù).方差不得超過0.015.現(xiàn)從某天生產的鋼板中隨機抽取26塊得天生產的鋼板重量的方差是否滿足要求?(取C=0.05)(附:方差不得超過0.015.現(xiàn)從某天生產的鋼板中隨機抽取26塊得天生產的鋼板重量的方差是否滿足要求?(取C=0.05)(附:XEQ\*jc3\*hps11\o\al(\s\up4(2),0)95(25)=37.65,XEQ\*jc3\*hps11\o\al(\s\up4(2),0)975(25)=40.65,XEQ\*jc3\*hps11\o\al(\s\up4(2),0)95(26)=38.89,XEQ\*jc3\*hps11\o\al(\s\up4(2),0)975(26)=41.92,u0.95=1.645,u0.975=1.96).裝3.(10分)設(X,Y)的聯(lián)合概率密度函數(shù)為求:(1)常數(shù)c;(2)邊際密度函數(shù)pX(x),pY(y);(3)X與Y是否獨立?(4)P(X+Y<1).線4.(10分)設總體X的分布函數(shù)為EQ\*jc3\*hps24\o\al(\s\
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年汽車銷售合同擔保服務模板附車輛改裝服務3篇
- 2024年短期公租房租賃合同
- 崗位職責表課程設計
- 2024幼兒園發(fā)展規(guī)劃(35篇)
- 基于機器學習的古代繪畫修復與復原技術研究
- 2024年營銷工作計劃(59篇)
- 沼氣池儲氣罐課程設計
- 線描西蘭花課程設計
- 英漢互譯系統(tǒng)的課程設計
- 物流行業(yè)運輸司機工作總結
- 經(jīng)顱多普勒超聲(TCD)
- 激勵約束考核實施細則
- 抽獎券模板(可修改)
- 高壓蒸汽滅菌效果監(jiān)測記錄簿表(完整版)
- 人教版物理八年級上冊全冊知識點總結
- 編織密度自動計算
- 硝酸及液體硝酸銨生產行業(yè)風險分級管控體系實施指南
- 瑤醫(yī)目診圖-望面診病圖解-目診
- 染色體標本的制作及組型觀察
- 導游實務課件
- 藝術類核心期刊目錄
評論
0/150
提交評論