江蘇省淮安市漣水中學2023年數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
江蘇省淮安市漣水中學2023年數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
江蘇省淮安市漣水中學2023年數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
江蘇省淮安市漣水中學2023年數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
江蘇省淮安市漣水中學2023年數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省淮安市漣水中學2023年數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.2.設函數(shù),則和的值分別為()A.、 B.、C.、 D.、3.函數(shù)的遞增區(qū)間是()A. B.和C. D.和4.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,被譽為“東方魔板”,它是由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成的.如圖是一個用七巧板拼成的正方形,若在此正方形中隨機地取一點,則該點恰好取自白色部分的概率為()A. B.C. D.5.設集合,集合,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.觀察:則第行的值為()A. B.C. D.7.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關于下列命題:①鉛垂的側(cè)面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側(cè)面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確8.已知等差數(shù)列滿足,,數(shù)列滿足,記數(shù)列的前n項和為,若對于任意的,,不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.9.已知命題對任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.10.函數(shù)直線與的圖象相交于A、B兩點,則的最小值為()A.3 B.C. D.11.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.12.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.在遞增等比數(shù)列中,其前項和,若,,則_________.14.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.15.已知定義在上的偶函數(shù)的導函數(shù)為,當時,有,且,則使得成立的的取值范圍是___________.16.已知拋物線C:的焦點F到準線的距離為4,過點F和的直線l與拋物線C交于P,Q兩點.若,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)已知是公差不為0的等差數(shù)列,,且成等比數(shù)列(1)求數(shù)列通項公式;(2)設,求數(shù)列的前項和19.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值20.(12分)某班主任對全班名學生進行了作業(yè)量多少與手機網(wǎng)游的調(diào)查,數(shù)據(jù)如下表:認為作業(yè)多認為作業(yè)不多總數(shù)喜歡手機網(wǎng)游不喜歡手機網(wǎng)游總數(shù)(1)若隨機地抽問這個班的一名學生,分別求事件“認為作業(yè)不多”和事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率;(2)若在“認為作業(yè)多”的學生中已經(jīng)用分層抽樣的方法選取了名學生.現(xiàn)要從這名學生中任取名學生了解情況,求其中恰有名“不喜歡手機網(wǎng)游”的學生的概率21.(12分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程22.(10分)已知等差數(shù)列中,,前5項的和為,數(shù)列滿足,(1)求數(shù)列,的通項公式;(2)記,求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.2、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.3、C【解析】求導后,由可解得結果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數(shù)求函數(shù)的增區(qū)間,屬于基礎題.4、A【解析】設七巧板正方形邊長為4,求出陰影部分的面積,再利用幾何概型概率公式計算作答.【詳解】設七巧板正方形邊長為4,則大陰影等腰三角形底邊長為4,底邊上的高為2,可得小正方形對角線長為2,小正方形邊長為,小陰影等腰直角三角形腰長為,小白色等腰直角三角形底邊長為2,則左上角陰影等腰直角三角形腰長為2,因此,圖中陰影部分面積,而七巧板正方形面積,于是得七巧板中白色部分面積為,所以在此正方形中隨機地取一點,則該點恰好取自白色部分的概率為.故選:A5、A【解析】解不等式求集合,然后判斷兩個集合的關系【詳解】,解得,故,可化為或,解得或,故,故“”是“”的充分不必要條件故選:A6、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B7、C【解析】根據(jù)圓錐的側(cè)面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側(cè)面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側(cè)面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C8、B【解析】由等差數(shù)列基本量法求出通項公式,用裂項相消法求得,求出的最大值,然后利用關于的不等式是一次不等式列出滿足的不等關系求得其范圍【詳解】設等差數(shù)列公差為,則由已知得,解得,∴,,∴,易知數(shù)列是遞增數(shù)列,且,∴若對于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點睛】本題考查求等差數(shù)列的通項公式,考查裂項相消法求數(shù)列的和,考查不等式恒成立問題,解題關鍵是掌握不等式恒成立問題的轉(zhuǎn)化與化歸思想,不等式恒成立首先轉(zhuǎn)化為求數(shù)列的單調(diào)性與最值,其次轉(zhuǎn)化為一次不等式恒成立9、A【解析】由絕對值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結的命題只有當兩命題都真時才是真命題,所以答案選A10、C【解析】先求出AB坐標,表示出,規(guī)定函數(shù),其中,利用導數(shù)求最小值.【詳解】聯(lián)立解得可得點.聯(lián)立解得可得點.由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.11、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉(zhuǎn)化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C12、A【解析】由已知設雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列下標和性質(zhì)得到,從而解出、,即可求出公比,從而求出,,即可得解;【詳解】解:因為,所以,因為,所以、為方程的兩根,所以或,因為為遞增的等比數(shù)列,所以,所以所以或(舍去),所以,,所以故答案為:14、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:15、【解析】根據(jù)當時,有,令,得到在上遞增,再根據(jù)在上的偶函數(shù),得到在上是奇函數(shù),則在上遞增,然后由,得到求解【詳解】∵當時,有,令,∴,∴在上遞增,又∵在上的偶函數(shù)∴,∴在上是奇函數(shù)∴在上遞增,又∵,∴當時,,此時,0<x<1,當時,,此時,,∴成立的的取值范圍是故答案為:﹒16、9【解析】根據(jù)拋物線C:的焦點F到準線的距離為4,求得拋物線方程.再由和,得到點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立求得的坐標,再由兩點間距離公式求解.【詳解】由拋物線C:的焦點F到準線的距離為4,所以,所以拋物線方程為.因為,,所以點P的縱坐標為1,代入拋物線方程,可得點P的橫坐標為,不妨設,則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點睛】本題主要考查拋物線的方程與性質(zhì),還考查了運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,18、(1)(2)【解析】(1)設等差數(shù)列的公差為,依題意得到方程組,解得、,即可求出數(shù)列的通項公式;(2)由(1)可得,再利用分組求和法求和即可;【小問1詳解】解:設等差數(shù)列的公差為,由題意,得,解得或,因為,所以【小問2詳解】解:當時,,所以19、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結合面面垂直的性質(zhì)可得平面,進一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點,連接,以為坐標原點,建立如圖所示的空間直角坐標系,由題得,解得.進而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設BC中點為,連接,,又面面,且面面,所以面.以為坐標原點,的方向為軸正方向,為單位長,建立如圖所示的空間直角坐標系.由(1)知PB⊥平面PCD,故PB⊥,設,可得所以由題得,解得.所以設是平面的法向量,則,即,可取.設是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1)事件“認為作業(yè)不多”和事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率分別為、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)確定所選的名學生中,“不喜歡手機網(wǎng)游”和“喜歡手機網(wǎng)游”的學生人數(shù),加以標記,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由題意可知,全班名學生中,“認為作業(yè)不多”的學生人數(shù)為人,“喜歡手機網(wǎng)游且認為作業(yè)多”的學生人數(shù)為人,因此,隨機地抽問這個班的一名學生,事件“認為作業(yè)不多”的概率為,事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率為.【小問2詳解】解:在“認為作業(yè)多”的學生中已經(jīng)用分層抽樣的方法選取了名學生,這名學生中“不喜歡手機網(wǎng)游”的學生人數(shù)為,記為,名學生中“喜歡手機網(wǎng)游”的學生人數(shù)為,分別記為、、、,從這名學生中任取名學生,所有的基本事件有:、、、、、、、、、,共種,其中,事件“恰有名“不喜歡手機網(wǎng)游”的學生”包含的基本事件有:、、、,共種,故所求概率為.21、(1)(2)或【解析】(1)拋物線的方程為,利用拋物線的定義求出點N,代入拋物線方程即可求解.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論