版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年蘇州衛(wèi)生職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知|log12x+4i|≥5,則實數(shù)x
的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實數(shù)x
的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.2.設(shè)O為坐標原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()
A.
B.
C.
D.答案:B3.已知復數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復數(shù)z,有w=.z0?.z,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點P的坐標,(x'、y')作為點Q的坐標,上述關(guān)系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標為(3,2),試求點P的坐標;
(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14
,即P點的坐標為(343,14).
(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-34.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;
②長江上某水文站觀察到一天中的水位X;
③某超市一天中的顧客量X.
其中的X是連續(xù)型隨機變量的是()
A.①
B.②
C.③
D.①②③答案:B5.下列命題中,正確的是()
A.若a∥b,則a與b的方向相同或相反
B.若a∥b,b∥c,則a∥c
C.若兩個單位向量互相平行,則這兩個單位向量相等
D.若a=b,b=c,則a=c答案:D6.設(shè)矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-127.給出下列四個命題:
①若兩個向量相等,則它們的起點相同,終點相同;
②在平行四邊形ABCD中,一定有;
③若則
④若則
其中正確的命題個數(shù)是()
A.1
B.2
C.3
D.4答案:C8.直線l1過點P(0,-1),且傾斜角為α=30°.
(I)求直線l1的參數(shù)方程;
(II)若直線l1和直線l2:x+y-2=0交于點Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))
(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)9.設(shè)函數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.10.在平行四邊形ABCD中,等于()
A.
B.
C.
D.答案:C11.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,12.用數(shù)字1,2,3,4,5組成的無重復數(shù)字的四位偶數(shù)的個數(shù)為()
A.8
B.24
C.48
D.120答案:C13.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B14.已知某試驗范圍為[10,90],若用分數(shù)法進行4次優(yōu)選試驗,則第二次試點可以是(
)。答案:40或60(不唯一)15.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).16.在正方體ABCD-A1B1C1D1中,若E為A1C1中點,則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點,AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.17.直線kx-y+1=3k,當k變動時,所有直線都通過定點[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A18.已知空間四邊形ABCD的對角線為AC、BD,設(shè)G是CD的中點,則+(+)等于()
A.
B.
C.
D.
答案:C19.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.20.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實數(shù)K的取值范圍為______.答案:因為函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).21.在極坐標系中,點(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D22.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設(shè)其交點為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點M坐標,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當λ=1時,S取得最小值4.23.某學校高一、高二、高三共有學生3500人,其中高三學生數(shù)是高一學生數(shù)的兩倍,高二學生數(shù)比高一學生數(shù)多300人,現(xiàn)在按的抽樣比用分層抽樣的方法抽取樣本,則應抽取高一學生數(shù)為()
A.8
B.11
C.16
D.10答案:A24.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C25.隨機地向某個區(qū)域拋撒了100粒種子,在面積為10m2的地方有2粒種子發(fā)芽,假設(shè)種子的發(fā)芽率為100%,則整個撒種區(qū)域的面積大約有______m2.答案:設(shè)整個撒種區(qū)域的面積大約xm2,由于假設(shè)種子的發(fā)芽率為100%,所以在面積為10m2的地方有2粒種子發(fā)芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.26.已知P(B|A)=,P(A)=,則P(AB)=()
A.
B.
C.
D.答案:D27.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當且僅當x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時取等號.即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當且僅當a與b共線時取等號,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時取等號.故為114.28.圓的極坐標方程為ρ=2cos(θ+π3),則該圓的圓心的極坐標是______.答案:∵ρ=2cos(θ+π3),展開得ρ=cosθ-3sinθ,∴ρ2=ρcosθ-3ρsinθ,∴x2+y2=x-3y,∴(x-12)2+(y+32)2=1.∴圓心(12,-32).∴ρ=(12)2+(-32)2=1,tanθ=-3212=-3,∴θ=-π3.故圓心的極坐標是(1,-π3).故為(1,-π3).29.如果隨機變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A30.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.31.為了考察兩個變量x和y之間的線性相關(guān)性,甲、乙兩位同學各自獨立地做10次和15次試驗,并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個人在試驗中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法正確的是()
A.l1和l2必定平行
B.l1與l2必定重合
C.l1和l2有交點(s,t)
D.l1與l2相交,但交點不一定是(s,t)答案:C32.一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開圖,還原為正方體,AB,CD為相鄰表面,且無公共頂點的兩條面上的對角線∴AB與CD所成的角為60°故選D.33.某農(nóng)科所種植的甲、乙兩種水稻,連續(xù)六年在面積相等的兩塊稻田中作對比試驗,試驗得出平均產(chǎn)量==415㎏,方差是=794,=958,那么這兩個水稻品種中產(chǎn)量比較穩(wěn)定的是()
A.甲
B.乙
C.甲、乙一樣穩(wěn)定
D.無法確定答案:A34.設(shè)x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立35.直線3x+5y-1=0與4x+3y-5=0的交點是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C36.已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對于函數(shù),當x=100時,y=95.76%=0.9576,結(jié)合選項檢驗選項A:x=100,y=0.0424,故排除A選項B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過100年,質(zhì)量便比原來減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x37.若點(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:338.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點M,則∠AMB≥90°的概率為______.答案:過A點做BC的垂線,垂足為M',當M點落在線段BM'(含M'點不含B點)上時∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1439.從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),這個兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個,根據(jù)古典概型概率公式得到P=820=25,故選B.40.復數(shù)z=(2+i)(1+i)在復平面上對應的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因為z=(2+i)(1+i)=2+3i+i2=1+3i,所以復數(shù)對應點的坐標為(1,3),所以位于第一象限.故選A.41.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()
A.線段或銳角三角形
B.線段與直角三角形
C.線段或鈍角三角形
D.線段、銳角三角形、直角三角形或鈍角三角形答案:B42.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()
A.AD與CB
B.OA與OC
C.AC與DB
D.DO與OB
答案:D43.(1)在數(shù)軸上求一點的坐標,使它到點A(9)與到點B(-15)的距離相等;
(2)在數(shù)軸上求一點的坐標,使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設(shè)該點為M(x),根據(jù)題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結(jié)合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標為-3故所求點的坐標為-3.(2)設(shè)該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據(jù)題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標是-21或-5.44.我們稱正整數(shù)n為“好數(shù)”,如果n的二進制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:
(1)二進制表示中恰有5位數(shù)碼的好數(shù)共有______個;
(2)不超過2012的好數(shù)共有______個.答案:(1)二進制表示中恰有5位數(shù)碼的二進制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進制數(shù)為:11111011100,它是一個十一位的二進制數(shù).其中一位的二進制數(shù)是:1,共有C11個;其中二位的二進制數(shù)是:11,共有C22個;
其中三位的二進制數(shù)是:101,110,111,共有C12+C22個;
其中四位的二進制數(shù)是:1011,1101,1110,1111,共有C23+C33個;
其中五位的二進制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;
以此類推,其中十位的二進制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個45.已知點M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.46.在輸入語句中,若同時輸入多個變量,則變量之間的分隔符號是()
A.逗號
B.空格
C.分號
D.頓號答案:A47.若由一個2*2列聯(lián)表中的數(shù)據(jù)計算得k2=4.013,那么有()把握認為兩個變量有關(guān)系.
A.95%
B.97.5%
C.99%
D.99.9%答案:A48.用三段論的形式寫出下列演繹推理.
(1)若兩角是對頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對頂角;
(2)矩形的對角線相等,正方形是矩形,所以,正方形的對角線相等.答案:(1)兩個角是對頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對頂角.結(jié)論(2)每一個矩形的對角線相等,大前提正方形是矩形,小前提正方形的對角線相等.結(jié)論49.某賽季,甲、乙兩名籃球運動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運動員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.50.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C第2卷一.綜合題(共50題)1.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()
A.3.2cm
B.3.4cm
C.3.6cm
D.4.0cm答案:C2.已知平面向量=(3,1),=(x,3),且⊥,則實數(shù)x的值為()
A.9
B.1
C.-1
D.-9答案:C3.將6位志愿者分成4組,每組至少1人,分赴世博會的四個不同場館服務,不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個人分為四組,若有三個人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會的四個不同場館服務,不同的分配方案有(20+45)×A44=1560種故為:1560.4.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗,則第一次試點的加入量可以是(
)g。答案:171.8或148.25.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點A、焦點F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為36.設(shè)A、B、C、D是半徑為r的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B7.設(shè)、、為實數(shù),,則下列四個結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數(shù),由可得結(jié)論.8.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故為2.9.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()
A.總工程師和專家辦公室
B.開發(fā)部
C.總工程師、專家辦公室和開發(fā)部
D.總工程師、專家辦公室和所有七個部答案:C10.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當a=0時,兩條直線垂直;當a=-1時,兩條直線重合故為:111.設(shè)和為不共線的向量,若2-3與k+6(k∈R)共線,則k的值為()
A.k=4
B.k=-4
C.k=-9
D.k=9答案:B12.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護設(shè)備,施工部門提出以下三種方案:
方案1:運走設(shè)備,此時需花費4000元;
方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56
000元;
方案3:不采取措施,此時,當兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費ξ(隨機變量)的分布列;
(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發(fā)生洪水的概率為P(A?B)=0.045,都不發(fā)生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設(shè)損失費為隨機變量ξ,則ξ的分布列為:(2)對方案1來說,花費4000元;對方案2來說,建圍墻需花費1000元,它只能抵御一條河流的洪水,但當兩河流都發(fā)生洪水時,損失約56000元,而兩河流同時發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費為:1000+56000×0.045=3520(元).對于方案來說,損失費的數(shù)學期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.13.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).
(1)畫出散點圖;
(2)求y關(guān)于x的線性回歸方程;
(3)若施化肥量為38kg,其他情況不變,請預測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.14.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪?。15.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D16.過點P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.17.設(shè)f(x)=ex(x≤0)ln
x(x>0),則f[f(13)]=______.答案:因為f(x)=ex(x≤0)ln
x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.18.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是(
)。答案:419.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C20.不論k為何實數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點,則實數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(0,1)點,與曲線x2+y2-2ax+a2-2a-4=0恒有交點,必須定點在圓上或圓內(nèi),即:a2+12
≤4+2a所以,-1≤a≤3故為:-1≤a≤3.21.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()
A.0
B.
C.
D.答案:B22.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.23.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48324.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.
(1)求證:圓心O在直線AD上.
(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)25.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.26.點P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(
)
A.0
B.1
C.2
D.不能確定答案:A27.用0,1,2,3組成沒有重復數(shù)字的四位數(shù),其中奇數(shù)有()
A.8個
B.10個
C.18個
D.24個答案:A28.設(shè)集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點,點的橫坐標,縱坐標都是自然數(shù),且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.29.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B30.對于函數(shù)y=f(x),在給定區(qū)間上有兩個數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.31.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B32.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}33.六個不同大小的數(shù)按如圖形式隨機排列,設(shè)第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設(shè)這六個數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31
C21
A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32
C21
A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33
C21
A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.34.已知函數(shù)f(x)=2x,x≥01,
x<0,若f(1-a2)>f(2a),則實數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,
x<0,x<0時是常函數(shù),x≥0時是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.35.從一批羽毛球產(chǎn)品中任取一個,質(zhì)量小于4.8
g的概率是0.3,質(zhì)量不小于4.85
g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B36.已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說法中:
①對于任意的θ,圓C1與圓C2始終相切;
②對于任意的θ,圓C1與圓C2始終有四條公切線;
③當θ=π6時,圓C1被直線l:3x-y-1=0截得的弦長為3;
④P,Q分別為圓C1與圓C2上的動點,則|PQ|的最大值為4.
其中正確命題的序號為
______.答案:①由圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,得到圓C1的圓心(2cosθ,2sinθ),半徑R=1;圓C2的圓心(0,0),半徑r=1,則兩圓心之間的距離d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以兩圓的位置關(guān)系是外切,此正確;②由①得兩圓外切,所以公切線的條數(shù)是3條,所以此錯誤;③把θ=π6代入圓C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圓心(3,1)到直線l的距離d=|3-2|3+1=12,則圓被直線l截得的弦長=21-(12)2=3,所以此正確;④由兩圓外切得到|PQ|=2+2=4,此正確.綜上,正確的序號為:①③④.故為:①③④37.設(shè)集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.38.如圖是某賽季甲、乙兩名籃球運動員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運動員的判斷錯誤的是()A.乙運動員得分的中位數(shù)是28B.乙運動員得分的眾數(shù)為31C.乙運動員的場均得分高于甲運動員D.乙運動員的最低得分為0分答案:根據(jù)題意,可得甲的得分數(shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分數(shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分數(shù)據(jù)按從小到大的順序排列,位于中間的兩個數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運動員得分的中位數(shù)是28,A項是正確的;乙運動員得分的眾數(shù)為31,B項是正確的;乙運動員的場均得分高于甲運動員,C各項是正確的.而D項因為乙運動員的得分沒有0分,故D項錯誤故選:D39.引入復數(shù)后,數(shù)系的結(jié)構(gòu)圖為()
A.
B.
C.
D.
答案:A40.參數(shù)方程(θ為參數(shù))化為普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D41.已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是______.答案:由題意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故為:3.42.△ABC內(nèi)接于以O(shè)為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O(shè)為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.43.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準線的距離之和的最小值為______.答案:依題設(shè)P在拋物線準線的投影為P',拋物線的焦點為F,則F(12,0),依拋物線的定義知P到該拋物線準線的距離為|PP'|=|PF|,則點P到點A(0,2)的距離與P到該拋物線準線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.44.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標原點)的一個法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標原點)的一個法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.45.不等式log32x-log3x2-3>0的解集為()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D46.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),則f(x)=______.答案:因為函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過點(2,1),所以函數(shù)y=ax經(jīng)過(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.47.凡自然數(shù)都是整數(shù),而
4是自然數(shù)
所以4是整數(shù).以上三段論推理()
A.正確
B.推理形式不正確
C.兩個“自然數(shù)”概念不一致
D.兩個“整數(shù)”概念不一致答案:A48.參數(shù)方程中當t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=149.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()
A.
B.
C.
D.
答案:C50.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B第3卷一.綜合題(共50題)1.電子手表廠生產(chǎn)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進行測試,設(shè)第X次首次測到正品,則P(1≤X≤2013)等于()
A.1-()2012
B.1-()2013
C.1-()2012
D.1-()2013答案:B2.若2x1+3y1=4,2x2+3y2=4,則過點A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因為過兩點確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=43.要使直線y=kx+1(k∈R)與焦點在x軸上的橢圓x27+y2a=1總有公共點,實數(shù)a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點,則(0,1)應在橢圓上或其內(nèi)部,即a>1,所以實數(shù)a的取值范圍是[1,7).故為[1,7).4.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.
求:
(1)d的變化范圍;
(2)當d取最大值時兩條直線的方程.答案:(1)方法一:①當兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當兩條直線的斜率存在時,設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)5.(1)把二進制數(shù)化為十進制數(shù);(2)把化為二進制數(shù).答案:(1)45,(2)解析:(1)先把二進制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進制的運算規(guī)則計算出結(jié)果;(2)根據(jù)二進制數(shù)“滿二進一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..6.從點A(2,-1,7)沿向量=(8,9,-12)的方向取線段長||=34,則B點坐標為()
A.(-9,-7,7)
B.(18,17,-17)
C.(9,7,-7)
D.(-14,-19,31)答案:B7.如圖,在復平面內(nèi),點A表示復數(shù)z的共軛復數(shù),則復數(shù)z對應的點是()A.AB.BC.CD.D答案:兩個復數(shù)是共軛復數(shù),兩個復數(shù)的實部相同,下部相反,對應的點關(guān)于x軸對稱.所以點A表示復數(shù)z的共軛復數(shù)的點是B.故選B.8.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當a>0時,有1<a,即a>1;當a<0時,不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應選:A9.關(guān)于x的方程x2+4x+k=0有一個根為-2+3i(i為虛數(shù)單位),則實數(shù)k=______.答案:由韋達定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1310.(1)用紅、黃、藍、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問共有多少種不同的擺放方案?
(2)用紅、黃、藍、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.
①求恰有兩個區(qū)域用紅色鮮花的概率;
②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學期望E(S).
答案:(1)根據(jù)分步計數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設(shè)M表示事件“恰有兩個區(qū)域用紅色鮮花”,如圖二,當區(qū)域A、D同色時,共有5×4×3×1×3=180種;當區(qū)域A、D不同色時,共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因為A、D為紅色時,共有4×3×3=36種;B、E為紅色時,共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=111.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當x1>x2>π時,使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢,故f(x1)+f(x2)2<f(x1+x22)不成立故選C.12.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標準方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標準方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.13.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17814.如圖,O為直線A0A2013外一點,若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點的距離相等,設(shè)OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為______.答案:設(shè)A0A2013的中點為A,則A也是A1A2012,…A1006A1007的中點,由向量的中點公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)15.在直角坐標系內(nèi),坐標軸上的點構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時為零}答案:在x軸上的點(x,y),必有y=0;在y軸上的點(x,y),必有x=0,∴xy=0.∴直角坐標系中,x軸上的點的集合{(x,y)|y=0},直角坐標系中,y軸上的點的集合{(x,y)|x=0},∴坐標軸上的點的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.16.在同一坐標系中,y=ax與y=a+x表示正確的是()A.
B.
C.
D.
答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負半軸上,由此排除D,知A是正確的;故選A.17.點P(2,1)到直線
3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D18.已知向量a與b的夾角為π3,|a|=2,則a在b方向上的投影為______.答案:由投影的定義可得:a在b方向上的投影為:|a|cos<a,b>,而|a|cos<a,b>=2cosπ3=22故為:2219.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是()
A.
B.
C.
D.答案:D20.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點與點P的距離的平方,顯然當O,P,M共線且P在O,M之間時,|OP|最小,此時|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.21.已知F1、F2為橢圓x225+y216=1的左、右焦點,若M為橢圓上一點,且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點M有
()個.A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得
MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12
(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12
2cyM=12,∴yM=4,故M是橢圓的短軸頂點,故滿足條件的點M有2個,故選
C.22.(坐標系與參數(shù)方程選做題)
直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8223.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點.已知OP1=(1,0),則OP2010的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構(gòu)成以0為首項,1為公差的等差數(shù)列∴OP2010的坐標為(1,2009)故為(1,2009)24.將3封信投入5個郵筒,不同的投法共有()
A.15
種
B.35
種
C.6
種
D.53種答案:D25.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認為正確嗎?
(2)不管猜想是否正確,這個結(jié)論是通過什么推理方法得到的?
(3)如果結(jié)論正確,請用數(shù)學歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學歸納法證明:①n=1時,結(jié)論成立;②假設(shè)n=k時,結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立26.已知R為實數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點,故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導函數(shù)恒等于0,故D正確;故選D.27.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.28.x+y+z=1,則2x2+3y2+z2的最小值為()
A.1
B.
C.
D.答案:C29.已知點M的極坐標為,下列所給四個坐標中能表示點M的坐標是()
A.
B.
C.
D.答案:D30.函數(shù)f(x)=log2(3x+1)的值域為()
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)答案:根據(jù)對數(shù)函數(shù)的定義可知,真數(shù)3x+1>0恒成立,解得x∈R.因此,該函數(shù)的定義域為R,原函數(shù)f(x)=log2(3x+1)是由對數(shù)函數(shù)y=log2t和t=3x+1復合的復合函數(shù).由復合函數(shù)的單調(diào)性定義(同増異減)知道,原函數(shù)在定義域R上是單調(diào)遞增的.根據(jù)指數(shù)函數(shù)的性質(zhì)可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故選A.解析:試題分析31.以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形只能是()A.平行四邊形B.矩形C.菱形D.梯形答案:∵數(shù)集A={a,b,c,d}中的四個元素互不相同,∴以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形,四條邊不相等∴四邊形只可能是梯形故選D.32.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()
A.
B.3
C.2
D.2答案:A33.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C34.已知拋物線C1:x2=2py(p>0)上縱坐標為p的點到其焦點的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設(shè)拋物線C1在點A,B處的切線交于點M,
(?。┣簏cM的軌跡C2的方程;
(ⅱ)若點Q為(?。┲星€C2上的動點,當直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.
…(5分)(Ⅱ)(ⅰ)設(shè)過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新時代教育政策創(chuàng)新-洞察分析
- 腕關(guān)節(jié)骨性結(jié)構(gòu)疲勞損傷預測-洞察分析
- 移動支付安全風險評估-第1篇-洞察分析
- 藥店特許經(jīng)營模式創(chuàng)新-洞察分析
- 云游戲跨域協(xié)作機制-洞察分析
- 藥酒治療風濕病療效-洞察分析
- 漁業(yè)生態(tài)保護與修復-第2篇-洞察分析
- 元宇宙企業(yè)品牌塑造-洞察分析
- 醫(yī)療器械出口市場拓展-洞察分析
- 水電安裝行業(yè)市場壁壘-洞察分析
- 期末測試卷(試題)-2024-2025學年四年級上冊數(shù)學滬教版
- 電子產(chǎn)品生產(chǎn)工藝流程手冊
- 酒廠融資方案
- 污水處理運營維護方案
- 《Python程序設(shè)計》高職全套教學課件
- 遼寧省大連市2023-2024學年高三上學期雙基測試(期末考試) 英語 含答案
- 大氣污染控制工程學習通超星期末考試答案章節(jié)答案2024年
- 走進創(chuàng)業(yè)學習通超星期末考試答案章節(jié)答案2024年
- 基礎(chǔ)生物化學復習知識要點
- 第一章地球的運動【單元檢測】(試卷版)
- 《多元統(tǒng)計實驗》主成分分析實驗報告二
評論
0/150
提交評論