版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省佛山市石門高級(jí)中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.2.已知點(diǎn)是橢圓上一點(diǎn),點(diǎn),則的最小值為A. B.C. D.3.已知圓與直線,則圓上到直線的距離為1的點(diǎn)的個(gè)數(shù)是()A.1 B.2C.3 D.44.有一機(jī)器人的運(yùn)動(dòng)方程為,(是時(shí)間,是位移),則該機(jī)器人在時(shí)刻時(shí)的瞬時(shí)速度為()A. B.C. D.5.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-96.對(duì)于兩個(gè)平面、,“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-18.某商場(chǎng)為了解銷售活動(dòng)中某商品銷售量與活動(dòng)時(shí)間之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某次銷售活動(dòng)中的商品銷售量與活動(dòng)時(shí)間,并制作了下表:活動(dòng)時(shí)間銷售量由表中數(shù)據(jù)可知,銷售量與活動(dòng)時(shí)間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測(cè)當(dāng)時(shí),的值為()A B.C. D.9.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.210.已知橢圓:的離心率為,則實(shí)數(shù)()A. B.C. D.11.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.曲線在點(diǎn)處的切線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線,直線,若,則_______.14.雙曲線的左焦點(diǎn)到直線的距離為________.15.已知圓,直線與圓C交于A,B兩點(diǎn),且,則______16.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線(1)若,求雙曲線的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實(shí)數(shù)的取值范圍18.(12分)設(shè)橢圓的左,右焦點(diǎn)分別為,其離心率為,且點(diǎn)在C上.(1)求C的方程;(2)O為坐標(biāo)原點(diǎn),P為C上任意一點(diǎn).若M為的中點(diǎn),過M且平行于的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù),使得?若存在,求值;若不存在,說明理由.19.(12分)已知拋物線:的焦點(diǎn)到頂點(diǎn)的距離為.(1)求拋物線的方程;(2)已知過點(diǎn)的直線交拋物線于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),設(shè)直線,的斜率分別為,,求的值.20.(12分)已知橢圓的左、右焦點(diǎn)分別為、,離心率,且過點(diǎn)(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點(diǎn),試探究在平面內(nèi)是否存在定點(diǎn)Q,使得是一個(gè)確定的常數(shù)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由21.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性22.(10分)如圖,正三棱柱的側(cè)棱長為,底面邊長為,點(diǎn)為的中點(diǎn),點(diǎn)在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡(jiǎn)得到,化簡(jiǎn)得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)?,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)?,所以,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C2、D【解析】設(shè),則,.所以當(dāng)時(shí),的最小值為.故選D.3、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點(diǎn)有兩個(gè).故選:B.4、B【解析】對(duì)運(yùn)動(dòng)方程求導(dǎo),根據(jù)導(dǎo)數(shù)意義即速度求得在時(shí)的導(dǎo)數(shù)值即可.【詳解】由題知,,當(dāng)時(shí),,即速度為7.故選:B5、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】因?yàn)橹本€:與:平行,所以有,因?yàn)閮蓷l平行直線:與:間距離為3,所以,或,當(dāng)時(shí),;當(dāng)時(shí),,故選:A6、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個(gè)點(diǎn)到的距離相等,當(dāng)這三個(gè)點(diǎn)不在一條直線上時(shí),可得;當(dāng)這三個(gè)點(diǎn)在一條直線上時(shí),則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個(gè)點(diǎn)到的距離相等,故必要性成立,所以“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的必要不充分條件.故選:B.7、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項(xiàng),以1為公差的等差數(shù)列,∴,即,∴當(dāng)時(shí),,當(dāng)時(shí),也適合上式,所以故選:A.8、C【解析】求出樣本中心點(diǎn)的坐標(biāo),代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點(diǎn)的坐標(biāo)代入回歸直線方程可得,解得,所以,回歸直線方程為,故當(dāng)時(shí),.故選:C.9、A【解析】由雙曲線方程,根據(jù)其漸近線方程有,求參數(shù)值即可.【詳解】由漸近線,結(jié)合雙曲線方程,∴,可得.故選:A.10、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因?yàn)椋运?,解?故選:C11、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時(shí),,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時(shí),不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B12、B【解析】求導(dǎo),得到曲線在點(diǎn)處的斜率,寫出切線方程.【詳解】因?yàn)?,所以曲線在點(diǎn)處斜率為4,所以曲線在點(diǎn)處的切線方程是,即,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:14、【解析】根據(jù)雙曲線方程求得左焦點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的方程為,設(shè)其左焦點(diǎn)的坐標(biāo)為,故可得,解得,故左焦點(diǎn)的坐標(biāo)為,則其到直線的距離.故答案為:.15、-2【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點(diǎn)到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標(biāo)準(zhǔn)方程可得,圓心為,半徑圓C與直線相交于、兩點(diǎn),且,由垂徑定理和勾股定理得圓心到直線的距離為,由點(diǎn)到直線距離公式得,所以,解得,故答案為:.16、0【解析】設(shè)等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項(xiàng)公式可得結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,,因?yàn)?,,成等比?shù)列,所以,所以,整理得,因?yàn)椋?,所?故答案為:0.【點(diǎn)睛】本題考查了等比中項(xiàng),考查了等差數(shù)列通項(xiàng)公式基本量運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對(duì)應(yīng)寫出焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結(jié)果.【詳解】(1)當(dāng)時(shí),雙曲線方程化為,所以,,,所以焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為.(2)因?yàn)椋?,解得,所以?shí)數(shù)的取值范圍是【點(diǎn)睛】本題根據(jù)雙曲線方程求焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎(chǔ)題.18、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組求解即可;(2)直線l斜率不存在時(shí),易得λ的值;斜率存在時(shí),設(shè)l方程為,聯(lián)立直線l與橢圓C的方程,求出;求出OP方程,聯(lián)立OP方程與橢圓C的方程,求出;代入即可求得λ.【小問1詳解】由已知可得,解得,∴橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】若直線的斜率不存在時(shí),,∴;當(dāng)斜率存在時(shí),設(shè)直線l的方程為.聯(lián)立直線l與橢圓方程,消去y,得,∴.∵,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在滿足條件,綜上可得,存在滿足條件.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵在于弦長公式的運(yùn)用,AB斜率為k,,M(1,0),則,,,將弦長之積轉(zhuǎn)化為韋達(dá)定理求解.19、(1)(2)【解析】(1)由拋物線的幾何性質(zhì)有焦點(diǎn)到頂點(diǎn)的距離為,從而即可求解;(2)當(dāng)直線的斜率不存在時(shí),不符合題意;當(dāng)直線的斜率存在時(shí),設(shè)的方程為,,,聯(lián)立拋物線的方程,由韋達(dá)定理及兩點(diǎn)間的斜率公式即可求解.【小問1詳解】解:依題意,,解得,∴拋物線的方程為;【小問2詳解】解:當(dāng)直線的斜率不存在時(shí),直線與拋物線僅有一個(gè)交點(diǎn),不符合題意;當(dāng)直線的斜率存在時(shí),設(shè)的方程為,,,由消去可得,∵直線交拋物線于不同的兩點(diǎn),∴,由韋達(dá)定理得,∴.20、(1)(2)存在,定點(diǎn)【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)對(duì)直線的斜率是否存在進(jìn)行分類討論,設(shè)出直線的方程并與橢圓方程聯(lián)立,結(jié)合是常數(shù)列方程,從而求得定點(diǎn)的坐標(biāo).小問1詳解】,,由題可得:.【小問2詳解】當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為,設(shè),,聯(lián)立方程組,整理得,可得,所以則恒成立,則,解得,,,此時(shí),即存在定點(diǎn)滿足條件當(dāng)直線AB的斜率不存在時(shí),直線AB的方程為x=-2,可得,,設(shè)要使得是一個(gè)常數(shù),即,顯然,也使得成立;綜上所述:存在定點(diǎn)滿足條件.21、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對(duì)求導(dǎo)得,因?yàn)樵谔幦〉脴O值,所以,即,解得;(2)由(1)得,,故,令,解得或,當(dāng)時(shí),,故為減函數(shù),當(dāng)時(shí),,故為增函數(shù),當(dāng)時(shí),,故為減函數(shù),當(dāng)時(shí),,故為增函數(shù),綜上所知:和是函數(shù)單調(diào)減區(qū)間,和是函數(shù)的單調(diào)增區(qū)間.22、(1)證明見解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024商場(chǎng)自助餐廳設(shè)備采購合同
- 2024年搬家服務(wù)合同:標(biāo)的、服務(wù)細(xì)節(jié)與責(zé)任分配
- 2024年新建住宅內(nèi)部施工協(xié)議
- 2024年攝影拍攝臨時(shí)場(chǎng)地協(xié)議
- 2024年臨沂建筑模板租賃合同
- 2024年教育培訓(xùn)合同服務(wù)質(zhì)量標(biāo)準(zhǔn)
- 2024年文化娛樂居間服務(wù)協(xié)議
- 2024年技術(shù)開發(fā)合同技術(shù)目標(biāo)與研發(fā)周期
- 2024年數(shù)據(jù)共享與保護(hù)協(xié)議違約金計(jì)算
- DB4117T 277-2020 春季紅薯生產(chǎn)技術(shù)規(guī)程
- 原發(fā)性骨髓纖維化課件
- 消防工程施工驗(yàn)收單樣板
- 中央空調(diào)人員培訓(xùn)內(nèi)容表
- 發(fā)現(xiàn)生活中的美-完整版PPT
- 小學(xué)道德與法治人教三年級(jí)上冊(cè)第三單元安全護(hù)我成長-《遭遇陌生人》教案
- CAMDS操作方法及使用技巧
- 平狄克《微觀經(jīng)濟(jì)學(xué)》(第8版)筆記和課后習(xí)題詳解
- 最優(yōu)化理論與算法課程教學(xué)大綱
- 2022年湖北省武漢市江岸區(qū)育才第二小學(xué)六上期中數(shù)學(xué)試卷
- (最新版)中小學(xué)思政課一體化建設(shè)實(shí)施方案三篇
- PSA提氫裝置操作規(guī)程
評(píng)論
0/150
提交評(píng)論