版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省慶陽市寧縣中2024屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.2.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.3.已知數(shù)列中,前項和為,且點在直線上,則=A. B.C. D.4.若,都為正實數(shù),,則的最大值是()A. B.C. D.5.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.66.意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個有趣的數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,……,這就是著名的斐波那契數(shù)列,該數(shù)列的前2022項中有()個奇數(shù)A.1012 B.1346C.1348 D.13507.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.8.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.9.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.10.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓11.在四面體中,點G是的重心,設(shè),,,則()A. B.C. D.12.函數(shù)的圖象在點處的切線的傾斜角為()A. B.0C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.若數(shù)列滿足,,則__________14.已知球的半徑為4,圓與圓為該球的兩個小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________15.已知不等式有且只有兩個整數(shù)解,則實數(shù)a的范圍為___________16.1202年意大利數(shù)學(xué)家列昂那多-斐波那契以兔子繁殖為例,引人“兔子數(shù)列”,又稱斐波那契數(shù)列.即該數(shù)列中的數(shù)字被人們稱為神奇數(shù),在現(xiàn)代物理,化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用.若此數(shù)列各項被3除后的余數(shù)構(gòu)成一新數(shù)列,則數(shù)列的前2022項的和為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角,,的對邊分別為,,.若,且.(1)求角的大??;(2)若的面積為,求的最大值.18.(12分)在直三棱柱中,,,,,分別是,上的點,且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)在中,,,為邊上一點,且(1)求;(2)若,求20.(12分)已知等差數(shù)列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設(shè)數(shù)列的通項,求證是等比數(shù)列,并求的前項和.21.(12分)已知拋物線上橫坐標為3的點P到焦點F的距離為4.(1)求拋物線E的方程;(2)點A、B為拋物線E上異于原點O的兩不同的點,且滿足.若直線AB與橢圓恒有公共點,求m的取值范圍.22.(10分)已知拋物線的焦點為F,直線l交拋物線于不同的A、B兩點.(1)若直線l的方程為,求線段AB的長;(2)若直線l經(jīng)過點P(-1,0),點A關(guān)于x軸的對稱點為A',求證:A'、F、B三點共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設(shè)圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.2、D【解析】由空間向量的坐標運算和空間向量平行的坐標表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.3、C【解析】點在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項為,公差為,,數(shù)列的前項和,,故選C考點:1、等差數(shù)列;2、數(shù)列求和4、B【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因為,都為正實數(shù),,所以,當(dāng)且僅當(dāng),即時,取最大值.故選:D5、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B6、C【解析】由斐波那契數(shù)列的前幾項分析該數(shù)列的項的奇偶規(guī)律,由此確定該數(shù)列的前2022項中的奇數(shù)的個數(shù).【詳解】由已知可得為奇數(shù),為奇數(shù),為偶數(shù),因為,所以為奇數(shù),為奇數(shù),為偶數(shù),…………所以為奇數(shù),為奇數(shù),為偶數(shù),又故該數(shù)列的前2022項中共有1348個奇數(shù),故選:C.7、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C8、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運算法則化簡.【詳解】因為,所以,則故復(fù)數(shù)的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運算,按照復(fù)數(shù)的運算法則化簡計算即可,較簡單.9、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B10、D【解析】根據(jù)題意,分析得動點滿足的條件,結(jié)合圓以及橢圓的方程,以及點的限制條件,即可判斷軌跡.【詳解】因為平面PAB,平面PAB,則//,又面面,故可得;因為,故可得,則,綜上所述:動點在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標系進行說明,在平面中,因為,以中點為坐標原點,以為軸,過且垂直于的直線為軸建立平面直角坐標系,如下所示:因為,故可得,整理得:,故動點的軌跡是一個圓;又當(dāng)三點共線時,幾何體不是空間幾何體,故動點的軌跡是一個不完整的圓.故選:.【點睛】本題考察立體幾何中動點的軌跡問題,處理的關(guān)鍵是利用立體幾何知識,找到動點滿足的條件,進而求解軌跡.11、B【解析】結(jié)合重心的知識以及空間向量運算求得正確答案.【詳解】設(shè)是中點,.故選:B12、A【解析】求出導(dǎo)函數(shù),計算得切線斜率,由斜率求得傾斜角【詳解】,設(shè)傾斜角為,則,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:714、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.15、【解析】參變分離后研究函數(shù)單調(diào)性及極值,結(jié)合與相鄰的整數(shù)點的函數(shù)值大小關(guān)系求出實數(shù)a的范圍.【詳解】整理為:,即函數(shù)在上方及線上存在兩個整數(shù)點,,故顯然在上單調(diào)遞增,在上單調(diào)遞減,且與相鄰的整數(shù)點的函數(shù)值為:,,,,顯然有,要恰有兩個整數(shù)點,則為0和1,此時,解得:,如圖故答案為:16、【解析】由數(shù)列各項除以3的余數(shù),可得為,知是周期為8的數(shù)列,即可求出數(shù)列的前2022項的和.【詳解】由數(shù)列各項除以3的余數(shù),可得為,是周期為8的數(shù)列,一個周期中八項和為,又,數(shù)列的前2022項的和.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由,等式右邊可化為余弦定理形式,根據(jù)求角即可(2)由余弦定理結(jié)合均值不等式可求出的最大值,即可求出三角面積的最大值.【詳解】(1)由得:,即:.∴,又,∴.(2)由,當(dāng)且僅當(dāng)?shù)忍柍闪?得:..【點睛】本題主要考查了余弦定理,均值不等式,三角形面積公式,屬于中檔題.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點,分別為軸建立空間直角坐標系,如圖,則,,,,,,設(shè),因為,所以,故,得,同理求得,所以,因為是平面的一個法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設(shè)平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設(shè)表示平面與平面所成銳二面角,則19、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【詳解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴20、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應(yīng)用求出的值,進一步求出數(shù)列的通項公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.21、(1)(2)【解析】(1)由焦半徑公式可得,求解即可得答案;(2)由題意,直線AB斜率不為0,設(shè),,聯(lián)立直線與拋物線的方程,由韋達定理及可得,從而可得直線AB恒過定點,進而可得定點在橢圓內(nèi)部或橢圓上即可求解.【小問1詳解】解:因為拋物線上橫坐標為3的點P到焦點F的距離為4,所以,解得,所以拋物線E的方程為;【小問2詳解】解:由題意,直線AB斜率不為0,設(shè),,由,可得,所以,因為,即,所以,所以,即,所以,所以直線,所以直線AB恒過定點,因為直線AB與橢圓恒有公共點,所以定點在橢圓內(nèi)部或橢圓上,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)學(xué)校招聘會12
- 物理必修二期末考試題含答案
- 學(xué)校教室墻面抹灰修補施工方案
- ABB機器人中文手冊
- 市場營銷活動保密協(xié)議書
- 學(xué)前班語文上冊教學(xué)計劃
- 2024年電子醫(yī)保培訓(xùn)
- 影院品牌形象設(shè)計合同
- 物流配送交通監(jiān)控優(yōu)化方案
- 高效焊錫廢氣處理設(shè)備選型方案
- 浙江省金華市蘭溪市2023-2024學(xué)年五年級上學(xué)期期中數(shù)學(xué)試卷
- 綠植花卉租擺及園林養(yǎng)護服務(wù)投標方案(技術(shù)方案)
- 米油調(diào)料副食品配送投標方案(技術(shù)標)
- 影視鑒賞智慧樹知到答案2024年南華大學(xué)
- DGTJ08-9-2023 建筑抗震設(shè)計標準
- 干部人事檔案專項審核工作情況報告(8篇)
- 2024年秋季新人教版九年級上冊化學(xué)全冊教案
- 2024秋八年級道德與法治上冊 第四單元 維護國家利益 第十課 建設(shè)美好祖國 第1框 關(guān)心國家發(fā)展教學(xué)設(shè)計 新人教版
- 公共租賃住房運行管理標準
- 重大事故隱患判定標準課件
- 2024年東南亞QCW準連續(xù)激光器市場深度研究及預(yù)測報告
評論
0/150
提交評論